First venomous crustacean discovered living in underwater caves

Oct 23, 2013 by Bob Yirka report
Speleonectes tanumekes Koenemann, Iliffe, van der Ham, 2003. Credit: PLoS ONE 6 (5): e19627, figure 1. doi:10.1371/journal.pone.0019627

(Phys.org) —A research team with members from the U.K., Germany, and Mexico has confirmed the first known existence of a venomous crustacean. In their paper published in the journal Molecular Biology and Evolution, the researchers describe their study of Speleonectes tulumensis, of the group remipedes as well as their finding that it is indeed the first known crustacean to use venom to capture and kill prey.

Remipedes are a type of crustacean, which is a subgroup of arthropods. Venom is of course found in a wide variety of arthropods such as spiders and scorpions, but never before has a crustacean (of which there are 70,000 known kinds) been known to create and use .

Scientists have suspected S. tulumensis may be unique since they were first discovered living in underwater caves along coastlines in Mexico and Central America as far back as the 1980's. They have hollow fangs on the sides of their head behind their jaws. No one's been able to study them up close until now, however because of the difficulty in getting to where they live. In this latest effort, the team was able to collect some samples and then took them back to their lab. There they discovered that the one-of-a-kind creature actually has a complex venom delivery system, and that it produces more than one type of toxin.

Specifically, they found that the tiny creature has muscles that contract to pump venom into the fangs, and another set they use for injection once prey is bitten (they are also able to squeeze off the fang chamber to prevent backwash). They also found that the venom has a both a neurotoxin and enzyme in it to deal with prey in two different ways. The neurotoxins (similar to those found in ) act to disable , likely by causing spasms, while the enzymes (similar to those found in ) break down body tissue allowing S. tulumensis to suck the body out of the shell and then to digest it.

The researchers suggest that if one type of is venomous, it's likely there are others that just haven't been discovered yet. They also can offer no explanation as to why this particular creature out of all the others has developed the trait other than to note that it evolved in an environment that doesn't have many food sources.

Explore further: Australian tarantula venom contains novel insecticide against agricultural pests

More information: The first venomous crustacean revealed by transcriptomics and functional morphology: remipede venom glands express a unique toxin cocktail dominated by enzymes and a neurotoxin, Mol Biol Evol (2013) DOI: 10.1093/molbev/mst199

Abstract
Animal venoms have evolved many times. Venomous species are especially common in three of the four main groups of arthropods (Chelicerata, Myriapoda, Hexapoda), which together represent tens of thousands of species of venomous spiders, scorpions, centipedes and hymenopterans. Surprisingly, despite their great diversity of body plans there is no unambiguous evidence that any crustacean is venomous. We provide the first conclusive evidence that the aquatic, blind and cave-dwelling remipede crustaceans are venomous, and that venoms evolved in all four major arthropod groups. We produced a three-dimensional reconstruction of the venom delivery apparatus of the remipede Speleonectes tulumensis, showing that remipedes can inject venom in a controlled manner. A transcriptomic profile of its venom glands shows that they express a unique cocktail of transcripts coding for known venom toxins, including a diversity of enzymes and a probable paralytic neurotoxin very similar to one described from spider venom. We screened a transcriptomic library obtained from whole animals and identified a non-toxin paralogue of the remipede neurotoxin that is not expressed in the venom glands. This allowed us to reconstruct its probable evolutionary origin, and underlines the importance of incorporating data derived from non-venom gland tissue to elucidate the evolution of candidate venom proteins. This first glimpse into the venom of a crustacean and primitively aquatic arthropod reveals conspicuous differences from the venoms of other predatory arthropods such as centipedes, scorpions and spiders, and contributes valuable information for ultimately disentangling the many factors shaping the biology and evolution of venoms and venomous species.

Related Stories

Python venom traces could waste antivenom

Apr 16, 2013

A University of Queensland researcher has found the potential for Australian doctors to prescribe expensive antivenom to snake bite victims who don't need it.

Recommended for you

Male monkey filmed caring for dying mate (w/ Video)

Apr 18, 2014

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Orchid named after UC Riverside researcher

Apr 17, 2014

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

Apr 17, 2014

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

Apr 17, 2014

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

tadchem
not rated yet Oct 23, 2013
This brings them just a little bit closer to Arthropods such as the centipedes (subphylum Myriapoda), which also have toxin-producing glands used for bringing down prey.

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Researchers successfully clone adult human stem cells

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.