Improving light and heat spectra measurements

Oct 30, 2013

Whether you want to investigate objects in space, characterize the quality of light sources, optimize photovoltaics modules or analyze chemical compounds, measuring the spectrum of light- or heat sources is often the method of choice. Conventional procedures thereby generate radiation distribution curves which are distorted and have to be subsequently corrected. The Physikalisch-Technische Bundesanstalt (PTB) has now developed a mathematical procedure which yields clearly improved results and can be applied in numerous fields of radiometry and photometry. The software required can be downloaded free of charge from PTB's website.

Measuring systems for optical or such as, e.g., radiometers, spectrometers and photometers, generate spectral distribution curves which shed light on the characteristics of the measured radiation (e.g. its luminance, its colour quality, its temperature or its wavelength). These distribution curves, however, exhibit distortions which are caused by the measuring instrument used. There are correction procedures, but these are reliable to a certain extent only. Scientists at PTB have found a new approach to this problem: they have, for the first time, considered the occurring distortions as mathematical convolution and used the Richardson-Lucy method - an iterative procedure - for the deconvolution.

An issue which has often been discussed with regard to the Richardson-Lucy method is the need for a criterion for the breaking of the iterations. In this context, a novel approach has been developed at PTB which works, in principle, automatically and independent of additional parameters. This new approach has turned out to be very robust, both in comprehensive simulations and in investigations of measurement data. The scientists hereby investigated numerous scenarios with diverse line spread functions and signal-to-noise ratios. The procedure developed in this way is suitable both to improve broadband spectral distribution curves (as occurring, e.g., in heat radiators) and narrowband distribution curves (as occurring in LEDs).

Explore further: New portable vacuum standard

More information: Eichstädt, S. (2013). Comparison of the Richardson-Lucy method and a classical approach for spectrometer bandpass correction, Metrologia 50, 107 - 118.

add to favorites email to friend print save as pdf

Related Stories

Seeing in the dark

Oct 29, 2013

Thermal infrared (IR) energy is emitted from all things that have a temperature greater than absolute zero. Human eyes, primarily sensitive to shorter wavelength visible light, are unable to detect or differentiate ...

Checking people at airports -- with terahertz radiation

Sep 18, 2008

Within the last few years the number of transport checks – above all at airports – has been increased considerably. A worthwhile effort as, after all, it concerns the protection of passengers. Possibilities for new and ...

X-ray telescope to detect dark energy in space

Mar 16, 2010

It will be on board in 2012, when a Soyus-2 rocket carries an X-ray telescope into space to decode the nature of the universe's dark energy: an X-ray detector developed by the Max Planck Institute for Extraterrestrial Physics. ...

Recommended for you

New portable vacuum standard

4 hours ago

A novel Portable Vacuum Standard (PVS) has been added to the roster of NIST's Standard Reference Instruments (SRI). It is now available for purchase as part of NIST's ongoing commitment to disseminate measurement ...

Prototype for first traceable PET-MR phantom

4 hours ago

As cancer diagnostic tools, a new class of imagers – which combines positron-emission tomography (PET) with magnetic resonance imaging (MR or MRI) – has shown promise in the few years since these hybrid ...

Infrared imaging technique operates at high temperatures

Jan 23, 2015

From aerial surveillance to cancer detection, mid-wavelength infrared (MWIR) radiation has a wide range of applications. And as the uses for high-sensitivity, high-resolution imaging continue to expand, MWIR sources are becoming ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.