New small-molecule catalyst does the work of many enzymes

October 3, 2013
University of Illinois chemistry professor M. Christina White and graduate student Paul Gormisky developed a new catalyst that will help streamline the drug-discovery process. Credit: L. Brian Stauffer

Researchers report that they have created a man-made catalyst that is an "enzyme mimic." Unlike most enzymes, which act on a single target, the new catalyst can alter the chemical profiles of numerous types of small molecules. The catalyst – and others like it – will greatly speed the process of drug discovery, the researchers say.

Their findings appear in the Journal of the American Chemistry Society.

Most enzymes are large proteins that act on only one molecular target, said University of Illinois chemistry professor M. Christina White, who conducted the study with graduate student Paul Gormisky. Enzymes generally modify the chemical profiles of their targets to dismantle them or to enable them to perform specific functions.

One key modification involves replacing a carbon-hydrogen (C-H) bond with a carbon-oxygen (C-O-H or C=O) bond. These reactions, called oxidations, are essential to countless processes in the body, from drug detoxification to biosynthesis.

The new catalyst can oxidize specific C-H bonds on many different targets. This will greatly streamline the process of modifying known molecules in new ways, a key part of , White said.

"The main cost of drugs isn't making the drug, it's actually discovering the drug, in part because there aren't good ways to diversify molecules," she said. "So if you have one molecule of interest that you'd like to modify, you often have to resynthesize the whole thing. It's not efficient."

The other option is to develop a new enzyme for every modification you want to make, she said.

"Let's say someone in industry has some kind of medicinal compound and they want to oxidize it in a way that will give it a different or improved biological function," she said. "Currently, this may be accomplished either by using an enzyme that had been specifically engineered for that molecule, or, more commonly, through a long synthetic process that could take months to complete."

The new catalyst (called iron CF3-PDP) can accomplish one of these alterations in about half an hour, she said.

This catalyst and a previous one from White's lab (called iron PDP) have been designed to oxidize specific types of C-H bonds. Iron PDP goes after the most electron-rich C-H bond on a molecule, while the new catalyst targets the most electron-rich C-H bond that also is the least encumbered by nearby atoms.

The specificity of the new catalysts allows the researchers to use computational methods and modeling to predict which bonds the catalysts will alter, Gormisky said.

"The other breakthrough here is that this model could be very generally applicable not just to our catalysts, but this whole genre of catalysts that do C-H oxidations," White said.

The new has some limitations. It only oxidizes certain bonds on linear or cyclic , and it doesn't work on aromatic rings.

"But with the two new catalysts you can quickly and efficiently oxidize up to two different sites on one molecule," she said. She and her colleagues hope to create "a whole toolbox of these things" to oxidize potentially any C-H bond on any molecule, she said.

Explore further: 'Green chemistry' using carbon dioxide, low-cost catalysts: New way of producing potent carbon–boron synthetic reagents

More information: "Catalyst Controlled Aliphatic C-H Oxidations With a Predictive Model for Site Selectivity,"

Related Stories

Researchers harness nature to produce the fuel of the future

January 30, 2013

Hydrogen has tremendous potential as an eco-friendly fuel, but it is expensive to produce. Now researchers at Princeton University and Rutgers University have moved a step closer to harnessing nature to produce hydrogen for ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.