Salt-tolerant bacteria improve crop yields

Oct 07, 2013

Uzbek microbiologist Dilfuza Egamberdieva, group leader at the National University of Uzbekistan, at Tashkent, has isolated salt-tolerant bacterial strains that live in salt-degraded soils, where they help the rooting process in plants. After the selection of potentially root-colonizing bacteria, she has tested them in experimental settings on plants' roots, obtaining 10-15% yields increase. She hopes to apply her technique soon, in Uzbekistan, to boost the yield of economically important varieties such as wheat, cotton, tomato and cucumber.

Egamberdieva has been invited to present her results at the TWAS's 24th General Meeting in Buenos Aires, where she has been awarded one of the TWAS Prizes that carries a cash award of US$15,000.

TWAS, The World Academy of Sciences for the advancement of science in developing countries, headquartered in Trieste, Italy, was founded by Pakistani physicist Abdus Salam. This year the Academy celebrates its 30th anniversary at its conference in Buenos Aires.

More than 2.6 billion people in the world rely on agriculture, but around 52% of the land used for this scope shows soil degradation. Land impoverishment is often due to salt infiltrations in the ground, which weaken the plants and lower the yield. Salt inhibits "nodulation", the development of tiny nodules on plants' roots, where nitrogen fixation occurs. Nitrogen is a critical element limiting plant growth, and specific bacteria convert the atmospheric nitrogen absorbed by plants into a more usable form (ammonia).

Uzbekistan has 4,4 million hectares to use for agricultural purposes, but more than half are under-productive, due to excessive saline content from the Aral Sea basin.

Egamberdieva has been studying soil bacterial communities for more than 10 years. She has noticed that salty soils discourage bacterial growth, and stress plants at the same time. In addition, as she has repeatedly proven, salty soils often host bacteria that are noxious for humans.

In her investigation, Egamberdieva has spotted beneficial soil salt-resistant bacteria that help plants grow better, causing no harm to men. These bacteria are found around the roots of plants. "We found that bacteria from the Pseudomonas family, in particular Pseudomonas extremorientalis, are salt-resistant and grow close to the roots, where they compete with other bacteria for colonization. On the contrary, cannot actively colonize the plants' roots. Here, Pseudomonas produce antibiotics that plants use to defend themselves against fungi, trigger the rooting process and produce nodulation-promoting factors, thus giving the vegetation better chances to fix nitrogen and grow bigger". As an exchange for these favours, secrete exudates useful for the bacteria.

To better exploit these useful , the Uzbek microbiologist has come up with a technique that allows the selective enrichment of Pseudomonas strains. Using her technique, which has already been patented, Egamberdieva is able to isolate from the soil only beneficial root-stimulating bacteria.

"We have already completed some experiments, both in protected greenhouses and in open fields, working in close contact with local farmers", said Egamberdieva, who is also engaged in promotion campaigns with the government and in outreach campaigns among farmers. "Crops treated with the "bacterial fertilizers" give yields 12-15 % higher than normal, when are administered to tomatoes and cucumber". Soon, Egamberdieva hopes, she will be given the green light to test her findings on real fields, thus helping farmers achieve better products. Her research has been supported mostly by international organizations and funding agencies.

Explore further: Better mouse model enables colon cancer research

More information: www.twas.org/

Related Stories

Bacteria pitted against fungi to protect wheat and barley

Jan 10, 2013

(Phys.org)—Soil-dwelling bacteria that depend on wheat and barley roots for their "room and board" could soon prove themselves helpful to the plants in return. U.S. Department of Agriculture (USDA) scientists ...

Why crop rotation works

Jul 18, 2013

Crop rotation has been used since Roman times to improve plant nutrition and to control the spread of disease. A new study to be published in Nature's 'The ISME Journal' reveals the profound effect it has on enriching soil w ...

Benefits of Bt corn go beyond rootworm resistance

Feb 06, 2013

Engineered to produce the bacterial toxin, Bt, "Bt corn" resists attack by corn rootworm, a pest that feeds on roots and can cause annual losses of up to $1 billion. But besides merely protecting against these losses, the ...

Recommended for you

First step towards global attack on potato blight

1 hour ago

European researchers and companies concerned with the potato disease phytophthora will work more closely with parties in other parts of the world. The first move was made during the biennial meeting of the ...

Bacteria study could have agricultural impact

2 hours ago

Wichita State University microbiology professor Mark Schneegurt and ornithology professor Chris Rogers have discovered that one of North America's most common migratory birds – the Dark-eyed Junco – carries ...

Sex chromosomes—why the Y genes matter

14 hours ago

Several genes have been lost from the Y chromosome in humans and other mammals, according to research published in the open access journal Genome Biology. The study shows that essential Y genes are rescue ...

Better mouse model enables colon cancer research

May 27, 2015

Every day, it seems, someone in some lab is "curing cancer." Well, it's easy to kill cancer cells in a lab, but in a human, it's a lot more complicated, which is why nearly all cancer drugs fail clinical ...

How to get high-quality RNA from chemically complex plants

May 26, 2015

Ask any molecular plant biologist about RNA extractions and you might just open up the floodgates to the woes of troubleshooting. RNA extraction is a notoriously tricky and sensitive lab procedure. New protocols out of the ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.