Researchers quantify toxic ocean conditions during major extinction 93.9 million years ago

Oct 28, 2013
Credit: NASA

Oxygen in the atmosphere and ocean rose dramatically about 600 million years ago, coinciding with the first proliferation of animal life. Since then, numerous short lived biotic events—typically marked by significant climatic perturbations—took place when oxygen concentrations in the ocean dipped episodically.

The most studied and extensive of these events occurred 93.9 million years ago. By looking at the chemistry of rocks deposited during that time period, specifically coupled carbon and sulfur isotope data, a research team led by University of California, Riverside biogeochemists reports that oxygen-free and -rich waters extended across roughly five percent of the global during this major climatic perturbation—far more than the modern ocean's 0.1 percent but much less than previous estimates for this event.

The research suggests that previous estimates of oxygen-free and hydrogen sulfide-rich conditions, or "euxinia," were too high. Nevertheless, the limited and localized euxinia were still sufficiently widespread to have dramatic effect on the entire ocean's chemistry and thus biological activity.

"These conditions must have impacted nutrient availability in the ocean and ultimately the spatial and temporal distribution of marine life," said team member Jeremy D. Owens, a former UC Riverside graduate student, who is now a postdoctoral scientist at the Woods Hole Oceanographic Institution. "Under low-oxygen environments, many biologically important metals and other nutrients are removed from seawater and deposited in the sediments on the seafloor, making them less available for life to flourish."

"What makes this discovery particularly noteworthy is that we mapped out a landscape of bioessential elements in the ocean that was far more perturbed than we expected, and the impacts on life were big," said Timothy W. Lyons, a professor of biogeochemistry at UCR, Owens's former advisor and the principal investigator on the research project.

Study results appear online this week in the Proceedings of the National Academy of Sciences.

Across the event 93.9 million years ago, a major biological extinction in the marine realm has already been documented. Also associated with this event are high levels of in the atmosphere, which are linked to elevated ocean and atmospheric temperatures. Associated consequences include likely enhanced global rainfall and weathering of the continents, which further shifted the chemistry of the ocean.

"Our work shows that even though only a small portion of the ocean contained toxic and metal-scavenging hydrogen sulfide, it was sufficiently large so that changes to the ocean's chemistry and biology were likely profound," Owens said. "What this says is that only portions of the ocean need to contain sulfide to greatly impact biota."

For their analysis, the researchers collected seafloor mud samples, now rock, from multiple localities in England and Italy. They then performed chemical extraction on the samples to analyze the sulfur isotope compositions in order to estimate the chemistry of the .

According to the researchers, the importance of their study is elevated by the large amount of previous work on the same interval and thus the extensive availability of supporting data and samples. Yet despite all this past research, the team was able to make a fundamental discovery about the global conditions in the ancient ocean and their impacts on life.

"Today, we are facing rising carbon dioxide contents in the atmosphere through human activities, and the amount of oxygen in the ocean may drop correspondingly in the face of rising seawater temperatures," Lyons said. "Oxygen is less soluble in warmer water, and there are already suggestions of such decreases. In the face of these concerns, our findings from the warm, -poor ancient ocean may be a warning shot about yet another possible perturbation to marine ecology in the future."

Explore further: New evidence suggests Earth's oxygen levels fell after the Great Oxidation Event

More information: Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2, www.pnas.org/cgi/doi/10.1073/pnas.1305304110

Related Stories

Oxygen's ups and downs in the early atmosphere and ocean

Oct 23, 2012

Most researchers imagine the initial oxygenation of the ocean and atmosphere to have been something like a staircase, but with steps only going up. The first step, so the story goes, occurred around 2.4 billion ...

Extreme climate change linked to early animal evolution

Sep 26, 2012

An international team of scientists, including geochemists from the University of California, Riverside, has uncovered new evidence linking extreme climate change, oxygen rise, and early animal evolution.

Recommended for you

Kiribati leader visits Arctic on climate mission

Sep 20, 2014

Fearing that his Pacific island nation could be swallowed by a rising ocean, the president of Kiribati says a visit to the melting Arctic has helped him appreciate the scale of the threat.

NASA catches a weaker Edouard, headed toward Azores

Sep 19, 2014

NASA's Aqua satellite passed over the Atlantic Ocean and captured a picture of Tropical Storm Edouard as it continues to weaken. The National Hurricane Center expects Edouard to affect the western Azores ...

User comments : 0