Numerical validation of quantum magnetic ordering

Oct 22, 2013

A new study set out to use numerical simulations to validate previous theoretical predictions describing materials exhibiting so-called antiferromagneting characteristics. A recently discovered theory shows that the ordering temperature depends on two factors-namely the spin-wave velocity and the staggered magnetisation. The results, largely consistent with these theoretical predictions, have now been published in a paper in the European Physical Journal B by Ming-Tso Kao and Fu-Jiun Jiang from the National Taiwan Normal University, in Taipei.

In antiferromagnetic materials, the spins of electrons align in a regular pattern pointing in opposite directions to their neighbours. The materials' magnetic ordering conditions the , referred to as the Néel temperature, above which the macroscopic magnetic ordering is no longer present.

The authors attempted to confirm a new universal law established between the thermal and quantum properties of these three-dimensional quantum antiferromagnets. Specifically, the law suggests that the Néel temperature can be related to the staggered magnetisation density near a quantum critical point (QCP). At that point, there is a special class of continuous magnetic phase transition taking place at the absolute zero of temperature, driven by quantum-level fluctuations.

In order to produce quantitative predictions, they simulated a specific three-dimensional relevant model using the first principles of approximation-free Monte Carlo calculations. The authors thus extracted the Néel temperature, the zero-temperature staggered magnetisation in the system and the spinwave velocity.

They found that the universal relation is valid to a great extent, while there is a discrepancy between the and the simulation results. Further investigation, they believe, is required in order to better understand the discrepancy. For example, this could mean investigating whether the predicted universal relation is valid qualitatively or quantitatively for the same type and different type of quantum phase transitions occurring in other models than that considered here.

Explore further: The importance of three-way atom interactions in maintaining coherence

More information: M.-T. Kao, F.-J. Jiang (2013), Investigation of a universal behavior between Néel temperature and staggered magnetization density for a three-dimensional quantum antiferromagnet, European Physical Journal B, DOI: 10.1140/epjb/e2013-40726-6

add to favorites email to friend print save as pdf

Related Stories

Understanding a new kind of magnetism

Sep 23, 2013

Using low-frequency laser pulses, a team of researchers has carried out the first measurements that reveal the detailed characteristics of a unique kind of magnetism found in a mineral called herbertsmithite.

Recommended for you

Controlling core switching in Pac-man disks

10 hours ago

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

World's most complex crystal simulated

10 hours ago

The most complicated crystal structure ever produced in a computer simulation has been achieved by researchers at the University of Michigan. They say the findings help demonstrate how complexity can emerge ...

Atoms queue up for quantum computer networks

10 hours ago

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

Ultrasounds dance the 'moonwalk' in new metamaterial

Dec 23, 2014

Metamaterials have extraordinary properties when it comes to diverting and controlling waves, especially sound and light: for instance, they can make an object invisible, or increase the resolving power of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.