Numerical validation of quantum magnetic ordering

October 22, 2013

A new study set out to use numerical simulations to validate previous theoretical predictions describing materials exhibiting so-called antiferromagneting characteristics. A recently discovered theory shows that the ordering temperature depends on two factors-namely the spin-wave velocity and the staggered magnetisation. The results, largely consistent with these theoretical predictions, have now been published in a paper in the European Physical Journal B by Ming-Tso Kao and Fu-Jiun Jiang from the National Taiwan Normal University, in Taipei.

In antiferromagnetic materials, the spins of electrons align in a regular pattern pointing in opposite directions to their neighbours. The materials' magnetic ordering conditions the , referred to as the Néel temperature, above which the macroscopic magnetic ordering is no longer present.

The authors attempted to confirm a new universal law established between the thermal and quantum properties of these three-dimensional quantum antiferromagnets. Specifically, the law suggests that the Néel temperature can be related to the staggered magnetisation density near a quantum critical point (QCP). At that point, there is a special class of continuous magnetic phase transition taking place at the absolute zero of temperature, driven by quantum-level fluctuations.

In order to produce quantitative predictions, they simulated a specific three-dimensional relevant model using the first principles of approximation-free Monte Carlo calculations. The authors thus extracted the Néel temperature, the zero-temperature staggered magnetisation in the system and the spinwave velocity.

They found that the universal relation is valid to a great extent, while there is a discrepancy between the and the simulation results. Further investigation, they believe, is required in order to better understand the discrepancy. For example, this could mean investigating whether the predicted universal relation is valid qualitatively or quantitatively for the same type and different type of quantum phase transitions occurring in other models than that considered here.

Explore further: Researchers find evidence of 'quantum critical point' in high temperature superconductivity material

More information: M.-T. Kao, F.-J. Jiang (2013), Investigation of a universal behavior between Néel temperature and staggered magnetization density for a three-dimensional quantum antiferromagnet, European Physical Journal B, DOI: 10.1140/epjb/e2013-40726-6

Related Stories

Understanding a new kind of magnetism

September 23, 2013

Using low-frequency laser pulses, a team of researchers has carried out the first measurements that reveal the detailed characteristics of a unique kind of magnetism found in a mineral called herbertsmithite.

Recommended for you

Innovations from the wild world of optics and photonics

August 2, 2015

Traditional computers manipulate electrons to turn our keystrokes and Google searches into meaningful actions. But as components of the computer processor shrink to only a few atoms across, those same electrons become unpredictable ...

New blow for 'supersymmetry' physics theory

July 27, 2015

In a new blow for the futuristic "supersymmetry" theory of the universe's basic anatomy, experts reported fresh evidence Monday of subatomic activity consistent with the mainstream Standard Model of particle physics.

Rogue wave theory to save ships

July 29, 2015

Physicists have found an explanation for rogue waves in the ocean and hope their theory will lead to devices to warn ships and save lives.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.