Nuclear engineering researchers revealed fundamentals

October 2, 2013 by Kristina Ballard

The radiation materials science group at the Texas A&M University led by Dr. Lin Shao, associate professor of nuclear engineering, has made great progress toward understanding the fundamentals of defects in nuclear materials. By using molecular dynamics simulation and the supercomputer facility on campus, the team found a unique mechanism for how grain boundaries in metals remove defects. The knowledge can explain why some alloy structures are better than others for self-repairing of neutron-induced damage in reactor environments.

The defect repairing process is very similar to finding an empty seat in an almost fully occupied room.

"If you want to take the last empty seat in the middle, you have no need to fight for a path by penetrating through and disturbing all the people sitting ahead of you. You can ask everyone on the row stand up and occupy the seat next to him. Therefore, you get a seat with minimum disturbance," said Dr. Shao.

The new finding suggests that a point defect can shoot a chain-like defect toward a grain boundary to recombine with another defect on the boundary. Each defect on the chain only needs to move one small step, but the overall effect is equivalent to moving one defect over a long migration distance.

"The finding is critical to understanding why metals having high density of exhibit higher radiation tolerance. A better radiation tolerance means materials can be used in reactors for a longer time," said Mr. Di Chen, the Ph.D. student working on the project.

Recently, the results were published by Nature's Scientific Reports. The study was funded by the National Science Foundation as a five-year NSF career award project.

Explore further: Safer nuclear reactors could result from new research

More information: www.nature.com/srep/2013/130322/srep01450/full/srep01450.html

Related Stories

Radiation tolerant nanotwinned metals

February 1, 2013

Texas A&M University mechanical engineering researchers led by Dr. Xinghang Zhang have discovered ratiation-tolerant nanotwinned metals that could provide an important step forward for the design of materials for the next ...

Recommended for you

Magnetism at nanoscale

August 3, 2015

As the demand grows for ever smaller, smarter electronics, so does the demand for understanding materials' behavior at ever smaller scales. Physicists at the U.S. Department of Energy's Ames Laboratory are building a unique ...

Study calculates the speed of ice formation

August 3, 2015

Researchers at Princeton University have for the first time directly calculated the rate at which water crystallizes into ice in a realistic computer model of water molecules. The simulations, which were carried out on supercomputers, ...

Small tilt in magnets makes them viable memory chips

August 3, 2015

University of California, Berkeley, researchers have discovered a new way to switch the polarization of nanomagnets, paving the way for high-density storage to move from hard disks onto integrated circuits.

Scientists bring order, and color, to microparticles

August 3, 2015

A team of New York University scientists has developed a technique that prompts microparticles to form ordered structures in a variety of materials. The advance, which appears in the Journal of the American Chemical Society ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.