Nuclear engineering researchers revealed fundamentals

Oct 02, 2013 by Kristina Ballard

The radiation materials science group at the Texas A&M University led by Dr. Lin Shao, associate professor of nuclear engineering, has made great progress toward understanding the fundamentals of defects in nuclear materials. By using molecular dynamics simulation and the supercomputer facility on campus, the team found a unique mechanism for how grain boundaries in metals remove defects. The knowledge can explain why some alloy structures are better than others for self-repairing of neutron-induced damage in reactor environments.

The defect repairing process is very similar to finding an empty seat in an almost fully occupied room.

"If you want to take the last empty seat in the middle, you have no need to fight for a path by penetrating through and disturbing all the people sitting ahead of you. You can ask everyone on the row stand up and occupy the seat next to him. Therefore, you get a seat with minimum disturbance," said Dr. Shao.

The new finding suggests that a point defect can shoot a chain-like defect toward a grain boundary to recombine with another defect on the boundary. Each defect on the chain only needs to move one small step, but the overall effect is equivalent to moving one defect over a long migration distance.

"The finding is critical to understanding why metals having high density of exhibit higher radiation tolerance. A better radiation tolerance means materials can be used in reactors for a longer time," said Mr. Di Chen, the Ph.D. student working on the project.

Recently, the results were published by Nature's Scientific Reports. The study was funded by the National Science Foundation as a five-year NSF career award project.

Explore further: World's most complex crystal simulated

More information: www.nature.com/srep/2013/13032… /full/srep01450.html

add to favorites email to friend print save as pdf

Related Stories

Radiation tolerant nanotwinned metals

Feb 01, 2013

Texas A&M University mechanical engineering researchers led by Dr. Xinghang Zhang have discovered ratiation-tolerant nanotwinned metals that could provide an important step forward for the design of materials for the next ...

Recommended for you

Controlling core switching in Pac-man disks

Dec 24, 2014

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

World's most complex crystal simulated

Dec 24, 2014

The most complicated crystal structure ever produced in a computer simulation has been achieved by researchers at the University of Michigan. They say the findings help demonstrate how complexity can emerge ...

Atoms queue up for quantum computer networks

Dec 24, 2014

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

Ultrasounds dance the 'moonwalk' in new metamaterial

Dec 23, 2014

Metamaterials have extraordinary properties when it comes to diverting and controlling waves, especially sound and light: for instance, they can make an object invisible, or increase the resolving power of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.