Nuclear engineering researchers revealed fundamentals

October 2, 2013 by Kristina Ballard

The radiation materials science group at the Texas A&M University led by Dr. Lin Shao, associate professor of nuclear engineering, has made great progress toward understanding the fundamentals of defects in nuclear materials. By using molecular dynamics simulation and the supercomputer facility on campus, the team found a unique mechanism for how grain boundaries in metals remove defects. The knowledge can explain why some alloy structures are better than others for self-repairing of neutron-induced damage in reactor environments.

The defect repairing process is very similar to finding an empty seat in an almost fully occupied room.

"If you want to take the last empty seat in the middle, you have no need to fight for a path by penetrating through and disturbing all the people sitting ahead of you. You can ask everyone on the row stand up and occupy the seat next to him. Therefore, you get a seat with minimum disturbance," said Dr. Shao.

The new finding suggests that a point defect can shoot a chain-like defect toward a grain boundary to recombine with another defect on the boundary. Each defect on the chain only needs to move one small step, but the overall effect is equivalent to moving one defect over a long migration distance.

"The finding is critical to understanding why metals having high density of exhibit higher radiation tolerance. A better radiation tolerance means materials can be used in reactors for a longer time," said Mr. Di Chen, the Ph.D. student working on the project.

Recently, the results were published by Nature's Scientific Reports. The study was funded by the National Science Foundation as a five-year NSF career award project.

Explore further: Safer nuclear reactors could result from new research

More information:

Related Stories

Radiation tolerant nanotwinned metals

February 1, 2013

Texas A&M University mechanical engineering researchers led by Dr. Xinghang Zhang have discovered ratiation-tolerant nanotwinned metals that could provide an important step forward for the design of materials for the next ...

Recommended for you

A quantum of light for materials science

December 1, 2015

Computer simulations that predict the light-induced change in the physical and chemical properties of complex systems, molecules, nanostructures and solids usually ignore the quantum nature of light. Scientists of the Max-Planck ...

Quantum dots used to convert infrared light to visible light

December 1, 2015

(—A team of researchers at MIT has succeeded in creating a double film coating that is able to convert infrared light at modest intensities into visible light. In their paper published in the journal Nature Photonics, ...

Test racetrack dipole magnet produces record 16 tesla field

November 30, 2015

A new world record has been broken by the CERN magnet group when their racetrack test magnet produced a 16.2 tesla (16.2T) peak field – nearly twice that produced by the current LHC dipoles and the highest ever for a dipole ...

Turbulence in bacterial cultures

November 30, 2015

Turbulent flows surround us, from complex cloud formations to rapidly flowing rivers. Populations of motile bacteria in liquid media can also exhibit patterns of collective motion that resemble turbulent flows, provided the ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.