Nuclear engineering researchers revealed fundamentals

Oct 02, 2013 by Kristina Ballard

The radiation materials science group at the Texas A&M University led by Dr. Lin Shao, associate professor of nuclear engineering, has made great progress toward understanding the fundamentals of defects in nuclear materials. By using molecular dynamics simulation and the supercomputer facility on campus, the team found a unique mechanism for how grain boundaries in metals remove defects. The knowledge can explain why some alloy structures are better than others for self-repairing of neutron-induced damage in reactor environments.

The defect repairing process is very similar to finding an empty seat in an almost fully occupied room.

"If you want to take the last empty seat in the middle, you have no need to fight for a path by penetrating through and disturbing all the people sitting ahead of you. You can ask everyone on the row stand up and occupy the seat next to him. Therefore, you get a seat with minimum disturbance," said Dr. Shao.

The new finding suggests that a point defect can shoot a chain-like defect toward a grain boundary to recombine with another defect on the boundary. Each defect on the chain only needs to move one small step, but the overall effect is equivalent to moving one defect over a long migration distance.

"The finding is critical to understanding why metals having high density of exhibit higher radiation tolerance. A better radiation tolerance means materials can be used in reactors for a longer time," said Mr. Di Chen, the Ph.D. student working on the project.

Recently, the results were published by Nature's Scientific Reports. The study was funded by the National Science Foundation as a five-year NSF career award project.

Explore further: Atomic trigger shatters mystery of how glass deforms

More information: www.nature.com/srep/2013/13032… /full/srep01450.html

add to favorites email to friend print save as pdf

Related Stories

Radiation tolerant nanotwinned metals

Feb 01, 2013

Texas A&M University mechanical engineering researchers led by Dr. Xinghang Zhang have discovered ratiation-tolerant nanotwinned metals that could provide an important step forward for the design of materials for the next ...

Recommended for you

1980s aircraft helps quantum technology take flight

1 hour ago

What does a 1980s experimental aircraft have to do with state-of-the art quantum technology? Lots, as shown by new research from the Quantum Control Laboratory at the University of Sydney, and published in Nature Physics today. ...

Atomic trigger shatters mystery of how glass deforms

Oct 18, 2014

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

Superconducting circuits, simplified

Oct 17, 2014

Computer chips with superconducting circuits—circuits with zero electrical resistance—would be 50 to 100 times as energy-efficient as today's chips, an attractive trait given the increasing power consumption ...

Protons hog the momentum in neutron-rich nuclei

Oct 16, 2014

Like dancers swirling on the dance floor with bystanders looking on, protons and neutrons that have briefly paired up in the nucleus have higher-average momentum, leaving less for non-paired nucleons. Using ...

User comments : 0