Turning plastic bags into high-tech materials

Sep 25, 2013

University of Adelaide researchers have developed a process for turning waste plastic bags into a high-tech nanomaterial.

The innovative nanotechnology uses non-biodegradable plastic grocery bags to make ' membranes' ? highly sophisticated and expensive materials with a variety of potential advanced applications including filtration, sensing, and a range of biomedical innovations.

"Non-biodegradable plastic bags are a serious menace to and present a problem in terms of disposal," says Professor Dusan Losic, ARC Future Fellow and Research Professor of Nanotechnology in the University's School of Chemical Engineering.

"Transforming these waste materials through 'nanotechnological recycling' provides a potential solution for minimising at the same time as producing high-added value products."

Carbon nanotubes are tiny cylinders of , one nanometre in diameter (1/10,000 the diameter of a human hair). They are the strongest and stiffest materials yet discovered - hundreds of times stronger than steel but six times lighter - and their unique mechanical, electrical, thermal and transport properties present exciting opportunities for research and development. They are already used in a variety of industries including in electronics, sports equipment, long-lasting batteries, sensing devices and .

The University of Adelaide's Nanotech Research Group has 'grown' the carbon nanotubes onto nanoporous alumina membranes. They used pieces of grocery plastic bags which were vaporised in a furnace to produce carbon layers that line the pores in the membrane to make the tiny cylinders (the carbon nanotubes). The idea was conceived and carried out by PhD student Tariq Altalhi.

"Initially we used ethanol to produce the carbon nanotubes," says Professor Losic. "But my student had the idea that any should be useable."

The huge potential market for carbon nanotubes hinges on industry's ability to produce large quantities more cheaply and uniformly. Current synthesis methods usually involve complex processes and equipment, and most companies on the market measure production output in only several grams per day.

"In our laboratory, we've developed a new and simplified method of fabrication with controllable dimensions and shapes, and using a waste product as the carbon source," says Professor Losic.

The process is also catalyst and solvent free, which means the plastic waste can be used without generating poisonous compounds.

This research has been published online ahead of print in the journal Carbon.

Explore further: Tiny carbon nanotube pores make big impact

More information: www.sciencedirect.com/science/… ii/S0008622313006246

add to favorites email to friend print save as pdf

Related Stories

Densest array of carbon nanotubes grown to date

Sep 20, 2013

Carbon nanotubes' outstanding mechanical, electrical and thermal properties make them an alluring material to electronics manufacturers. However, until recently scientists believed that growing the high density ...

Recommended for you

Tiny carbon nanotube pores make big impact

Oct 29, 2014

A team led by the Lawrence Livermore scientists has created a new kind of ion channel based on short carbon nanotubes, which can be inserted into synthetic bilayers and live cell membranes to form tiny pores ...

An unlikely use for diamonds

Oct 27, 2014

Tiny diamonds are providing scientists with new possibilities for accurate measurements of processes inside living cells with potential to improve drug delivery and cancer therapeutics.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.