Engineers make golden breakthrough to improve electronic devices

September 5, 2013
Vikas Berry, William H. Honstead professor of chemical engineering, and his research team have studied a new three-atom-thick material -- molybdenum disulfide -- and found that manipulating it with gold atoms improves its electrical characteristics. Credit: Kansas State University

(Phys.org) —A Kansas State University chemical engineer has discovered that a new member of the ultrathin materials family has great potential to improve electronic and thermal devices.

Vikas Berry, William H. Honstead professor of chemical engineering, and his research team have studied a new three-atom-thick material—molybdenum disulfide—and found that manipulating it with improves its . Their research appears in a recent issue of Nano Letters.

The research may advance transistors, photodetectors, sensors and thermally conductive coatings, Berry said. It could also produce ultrafast, ultrathin logic and devices.

Berry's laboratory has been leading studies on synthesis and properties of several next-generation atomically thick nanomaterials, such as and boron-nitride layers, which have been applied for sensitive detection, high-rectifying electronics, mechanically strong composites and novel bionanotechnology applications.

"Futuristically, these atomically thick structures have the potential to revolutionize electronics by evolving into devices that will be only a few atoms thick," Berry said.

For the latest research, Berry and his team focused on transistors based on molybdenum disulfide, or MoS2, which was isolated only two years ago. The material is made of three-atom-thick sheets and has recently shown to have transistor-rectification that is better than graphene, which is a single-atom-thick sheet of .

When Berry's team studied molybdenum disulfide's structure, they realized that the sulfur group on its surface had a strong chemistry with noble metals, including gold. By establishing a bond between molybdenum disulfide and gold nanostructures, they found that the bond acted as a highly coupled gate capacitor.

Berry's team enhanced several transistor characteristics of molybdenum disulfide by manipulating it with gold .

"The spontaneous, highly capacitive, lattice-driven and thermally-controlled interfacing of on metal-dichalcogenide layers can be employed to regulate their carrier concentration, pseudo-mobility, transport-barriers and phonon-transport for future devices," Berry said.

The work may greatly improve future electronics, which will be ultrathin, Berry said. The researchers have developed a way to reduce the power that is required to operate these ultrathin devices.

"The research will pave the way for atomically fusing layered heterostructures to leverage their capacitive interactions for next-generation electronics and photonics," Berry said. "For example, the gold nanoparticles can help launch 2-D plasmons on ultrathin materials, enabling their interference for plasmonic-logic devices."

The research also supports the current work on molybdenum disulfide-graphene-based electron-tunneling transistors by providing a route for direct electrode attachment on a molybdenum disulfide tunneling gate.

"The intimate, highly capacitive interaction of gold on molybdenum disulfide can induce enhanced pseudo-mobility and act as electrodes for heterostructure devices," said T.S. Sreeprasad, a postdoctoral researcher in Berry's group.

The researchers plan to create further complex nanoscale architectures on molybdenum disulfide to build logic devices and sensors.

"The incorporation of gold into molybdenum disulfide provides an avenue for transistors, biochemical sensors, plasmonic devices and catalytic substrate," said Phong Nguyen, a doctoral student in chemical engineering, Wichita, Kan., who is part of Berry's research team.

Namhoon Kim, master's student in grain science and industry, Korea,worked on the research as an undergraduate in chemical engineering.

Explore further: Engineer making rechargeable batteries with layered nanomaterials

More information: pubs.acs.org/doi/abs/10.1021/nl402278y

Related Stories

Solar power heads in a new direction: thinner

June 26, 2013

Most efforts at improving solar cells have focused on increasing the efficiency of their energy conversion, or on lowering the cost of manufacturing. But now MIT researchers are opening another avenue for improvement, aiming ...

New catalyst could cut cost of making hydrogen fuel

July 2, 2013

(Phys.org) —A discovery at the University of Wisconsin-Madison may represent a significant advance in the quest to create a "hydrogen economy" that would use this abundant element to store and transfer energy.

Gold nanoparticles improve photodetector performance

July 26, 2013

The mineral molybdenum disulfide (MoS2), which, when solid, behaves in many ways like grease, has semiconducting properties that make it a promising alternative to silicon or graphene in electronic devices. It also strongly ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.