Atom-based analogues to electronic devices

September 3, 2013
Atom-based analogues to electronic devices

Scientists have pushed back the boundaries of atom-based transport, creating a current by characterizing the many-body effects in the transport of the atoms along a periodic lattice. This work by Anton Ivanov and colleagues from the Institute for Theoretical Physics, at the University of Heidel-berg, Germany, adopted a new analytical approach before comparing it to approximate numerical simulations, and is reported in a paper recently published in the European Physical Journal B.

Ultra- trapped in optical potentials offer solutions for the transport of particles capable of producing a current. What differentiates this solution from traditional approaches using electrons running along a metal wire is that it relies on so-called ultra-cold bosonic atoms. They present the advantage of occupying the same place in space even when they have the same energy, a feat impossible to achieve with electrons. This leads to current occuring in systems with reduced dimensionality, as part of the field of atomtronics. Ultimately, this opens the door to the creation of bosonic analogues to the regular systems used in electronic devices such as diodes or field-effect transistors.

In this study, the authors extended previous single-atom transport approaches to a model reflecting the many-body setting of bosonic atom transport. Their challenge was to develop an analytical approach that allows particles to jump in and out and therefore produce a controlled current through the sample under study. This means that their model needed to include reservoirs for the particles. Specifically, they used a chain of coupled to two bosonic reservoirs that keep the system far from equilibrium. They then compared it with . Further steps would include better many-body interaction effects with higher orders of approximations.

Explore further: A new class of electron interactions in quantum systems

More information: Ivanov, G. Kordas, A. Komnik, and S. Wimberger (2013), Bosonic transport through a chain of quantum dots, European Physical Journal B, DOI: 10.1140/epjb/e2013-40417-4

Related Stories

Quantum information motion control is now improved

April 3, 2012

Physicists have recently devised a new method for handling the effect of the interplay between vibrations and electrons on electronic transport. Their paper is about to be published in the European Physical Journal B. This ...

Coupled particles cross energy wall

May 29, 2013

For the first time, a new kind of so-called Klein tunnelling-representing the quantum equivalent of crossing an energy wall- has been presented in a model of two interacting particles. This work by Stefano Longhi and Giuseppe ...

Researchers propose a new system for quantum simulation

September 3, 2013

Researchers from the universities in Mainz, Frankfurt, Hamburg and Ulm have proposed a new platform for quantum simulation. In a theoretical paper recently published in Physical Review Letters, they show that a combined system ...

Recommended for you

Understanding nature's patterns with plasmas

August 23, 2016

Patterns abound in nature, from zebra stripes and leopard spots to honeycombs and bands of clouds. Somehow, these patterns form and organize all by themselves. To better understand how, researchers have now created a new ...

Light and matter merge in quantum coupling

August 22, 2016

Where light and matter intersect, the world illuminates. Where light and matter interact so strongly that they become one, they illuminate a world of new physics, according to Rice University scientists.

Measuring tiny forces with light

August 25, 2016

Photons are bizarre: They have no mass, but they do have momentum. And that allows researchers to do counterintuitive things with photons, such as using light to push matter around.

Stretchy supercapacitors power wearable electronics

August 23, 2016

A future of soft robots that wash your dishes or smart T-shirts that power your cell phone may depend on the development of stretchy power sources. But traditional batteries are thick and rigid—not ideal properties for ...

Spherical tokamak as model for next steps in fusion energy

August 24, 2016

Among the top puzzles in the development of fusion energy is the best shape for the magnetic facility—or "bottle"—that will provide the next steps in the development of fusion reactors. Leading candidates include spherical ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.