Atom-based analogues to electronic devices

Sep 03, 2013
Atom-based analogues to electronic devices

Scientists have pushed back the boundaries of atom-based transport, creating a current by characterizing the many-body effects in the transport of the atoms along a periodic lattice. This work by Anton Ivanov and colleagues from the Institute for Theoretical Physics, at the University of Heidel-berg, Germany, adopted a new analytical approach before comparing it to approximate numerical simulations, and is reported in a paper recently published in the European Physical Journal B.

Ultra- trapped in optical potentials offer solutions for the transport of particles capable of producing a current. What differentiates this solution from traditional approaches using electrons running along a metal wire is that it relies on so-called ultra-cold bosonic atoms. They present the advantage of occupying the same place in space even when they have the same energy, a feat impossible to achieve with electrons. This leads to current occuring in systems with reduced dimensionality, as part of the field of atomtronics. Ultimately, this opens the door to the creation of bosonic analogues to the regular systems used in electronic devices such as diodes or field-effect transistors.

In this study, the authors extended previous single-atom transport approaches to a model reflecting the many-body setting of bosonic atom transport. Their challenge was to develop an analytical approach that allows particles to jump in and out and therefore produce a controlled current through the sample under study. This means that their model needed to include reservoirs for the particles. Specifically, they used a chain of coupled to two bosonic reservoirs that keep the system far from equilibrium. They then compared it with . Further steps would include better many-body interaction effects with higher orders of approximations.

Explore further: Throwing light on a mysterious human 'superpower'

More information: Ivanov, G. Kordas, A. Komnik, and S. Wimberger (2013), Bosonic transport through a chain of quantum dots, European Physical Journal B, DOI: 10.1140/epjb/e2013-40417-4

Related Stories

Coupled particles cross energy wall

May 29, 2013

For the first time, a new kind of so-called Klein tunnelling-representing the quantum equivalent of crossing an energy wall- has been presented in a model of two interacting particles. This work by Stefano ...

Researchers propose a new system for quantum simulation

Sep 03, 2013

Researchers from the universities in Mainz, Frankfurt, Hamburg and Ulm have proposed a new platform for quantum simulation. In a theoretical paper recently published in Physical Review Letters, they show t ...

Quantum information motion control is now improved

Apr 03, 2012

Physicists have recently devised a new method for handling the effect of the interplay between vibrations and electrons on electronic transport. Their paper is about to be published in the European Physical Journal B. This s ...

Recommended for you

Throwing light on a mysterious human 'superpower'

2 hours ago

Most people, at some point in their lives, have dreamt of being able to fly like Superman or develop superhuman strength like the Hulk. But very few know that we human beings have a "superpower" of our own, ...

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.