Small-molecule solar cells get 50% increase in efficiency with optical spacer

August 14, 2013 by Lisa Zyga feature
(Left) A ZnO optical spacer viewed under an atomic force microscope. (Center) The device structure of the small-molecule solar cell. (Right) Solar cell performance with and without an optical spacer. Credit: Aung Ko Ko Kyaw, et al. ©2013 American Chemical Society

(Phys.org) —In the world of organic solar cells, polymer-based devices may currently be at the top, but other organic materials such as "small molecules" also prove to be promising. Although small-molecule organic solar cells currently have lower efficiencies than polymer solar cells, they are generally easier to fabricate and their efficiencies are improving.

In a new study, researchers have shown that they can increase the efficiency of one type of small-molecule organic solar cell from 6.02% to 8.94% simply by tuning the thickness of the active layer and inserting an optical spacer between the active layer and an electrode. The efficiency improvement demonstrates that small-molecule solar cells have the potential to compete with their polymer counterparts, which have efficiencies approaching 10%.

The researchers, led by Alan J. Heeger at the University of California at Santa Barbara, have published their paper on the efficiency improvement in small-molecule solar cells in a recent issue of Nano Letters.

As the scientists explain in their paper, small-molecule have several advantages over solar cells: relatively simple synthesis, high charge , similarly sized particles (monodispersity), and better reproducibility, among others. However, small-molecule solar cells have so far achieved top efficiencies of about 8%, lagging somewhat behind the best polymer devices.

By demonstrating how a few simple changes can increase the efficiency of one type of small-molecule organic solar cell by nearly 50%, the scientists here have shown that these devices still have the potential for vast improvements.

Tuning the thickness of the active layer and inserting a optical spacer between the active layer and enable the active layer to harvest more light, increasing . The insertion of the optical spacer places the active layer in a more favorable position within the optical electric field within the cell. As the scientists explained, the optical spacer contributes to increased light absorption in three ways: increasing the charge collection efficiency, serving as a blocking layer for holes, and reducing the recombination rate.

Explore further: USC team develops promising polymer for solar cells

More information: Aung Ko Ko Kyaw, et al. "Improved Light Harvesting and Improved Efficiency by Insertion of an Optical Spacer (ZnO) in Solution-Processed Small-Molecule Solar Cells." Nano Letters. DOI: 10.1021/nl401758g

Related Stories

USC team develops promising polymer for solar cells

November 7, 2011

(PhysOrg.com) -- Currently, most solar cells are based on silicon which for the most part, necessitates a rigid structure. This isn’t always ideal as some applications would benefit by material that is more bendable. ...

The fluorescent future of solar cells

May 9, 2013

(Phys.org) —For some solar cells, the future may be fluorescent. Scientists at Yale have improved the ability of a promising type of solar cell to absorb light and convert it into electrical power by adding a fluorescent ...

UCLA scientists double efficiency of novel solar cell

July 29, 2013

Nearly doubling the efficiency of a breakthrough photovoltaic cell they created last year, UCLA researchers have developed a two-layer, see-through solar film that could be placed on windows, sunroofs, smartphone displays ...

Plastic solar cells' new design promises bright future

August 14, 2013

Energy consumption is growing rapidly in the 21st century, with rising energy costs and sustainability issues greatly impacting the quality of human life. Harvesting energy directly from sunlight to generate electricity using ...

Recommended for you

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Shakescene21
5 / 5 (1) Aug 14, 2013
Very nice trick. I wonder if optical spacers can improve the efficiencies of other types of photovoltaic cells.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.