Experimental physicists redefine ultrafast, coherent magnetism

Electronic properties of materials can be directly influenced via light absorption in under a femtosecond (10-15 seconds), which is regarded as the limit of the maximum achievable speed of electronic circuits. In contrast, ...

How molecules interact with a laser field

When molecules interact with the oscillating field of a laser, an instantaneous, time-dependent dipole is induced. This very general effect underlies diverse physical phenomena such as optical tweezers, for which Arthur Ashkin ...

Carrying and releasing nanoscale cargo with "nanowrappers"

This holiday season, scientists at the Center for Functional Nanomaterials (CFN)—a U.S. Department of Energy Office of Science User Facility at Brookhaven National Laboratory—have wrapped a box of a different kind. Using ...

Turning graphene into light nanosensors

Graphene has many properties; it is e.g. an extremely good conductor. But it does not absorb light very well. To remedy this limiting aspect of what is an otherwise amazing material, physicists resort to embedding a sheet ...

The comeback kid—black phosphorus and its new potential

When it was discovered over a century ago, black phosphorus was considered relatively useless. Over the past five years, however, the engineers and chemists have become intrigued by the material for its potential as an ultra-thin ...

Ultra-thin silicon films create vibrant optical colors

A new technology, which creates a rainbow of optical colors with ultra-thin layers of silicon, has been recently demonstrated by a research group at the University of Alabama in Huntsville (UAH).

page 1 from 5