Researchers observe new type of ice forms between layers of graphene oxide

Aug 14, 2013 by Bob Yirka weblog
Researchers observe new type of ice forms between layers of graphene oxide

(Phys.org) —A combined team of researchers from Korea and The Netherlands has discovered a new type of ice that forms between layers of graphene oxide. In their paper published in the journal Nano Letters, the team describes the ice's properties and how they caused the ice to form.

The new type of ice was discovered via atomistic modeling which allowed the researchers to control its development. The new type of ice, a form of bilayer ice, can only form under very special conditions. In this new effort, the researchers were experimenting with graphene , which are unique because they allow water, but no other or , to pass through.

In their model, graphene oxide layers were stacked one on top of one other and then water was allowed to pass through one of the membranes where it was chilled to below freezing at the junction point. The water between froze into a lattice pattern very similar to the membrane. To create the bilayer ice, more water was allowed to pass through the membrane, freezing on top of the first layer. Rather than adhering to one another as would occur with normal ice, the two layers of ice actually slide against one another, in a zig-zag fashion as they follow the pattern. This is because, the researchers explain, the water makes its way through the membrane in a special way—one that allows for the water to freeze into a new kind of ice .

The researchers note that normally when (reduced) graphene oxide is layered, the distance between the two pieces is just 0.6 nm—enough for just one layer of water to freeze into ice. To allow for two layers, the researchers used unreduced graphene oxide which allowed for a span of 0.9 nm—enough extra space to allow for a second layer of ice to form.

The newly found properties of graphene oxide and ice formation could lead to new types of filters or membranes that are capable of separating different substances. Also, if the graphene oxide were doped with nitrogen, the researchers note, the possibility exists for creating a new type of catalyst.

Explore further: Mars: What lies beneath

More information: Origin of Anomalous Water Permeation through Graphene Oxide Membrane, Nano Lett., 2013, 13 (8), pp 3930–3935. DOI: 10.1021/nl4020292

Abstract
Water inside the low-dimensional carbon structures has been considered seriously owing to fundamental interest in its flow and structures as well as its practical impact. Recently, the anomalous perfect penetration of water through graphene oxide membrane was demonstrated although the membrane was impenetrable for other liquids and even gases. The unusual auxetic behavior of graphene oxide in the presence of water was also reported. Here, on the basis of first-principles calculations, we establish atomistic models for hybrid systems composed of water and graphene oxides revealing the anomalous water behavior inside the stacked graphene oxides. We show that formation of hexagonal ice bilayer in between the flakes as well as melting transition of ice at the edges of flakes are crucial to realize the perfect water permeation across the whole stacked structures. The distance between adjacent layers that can be controlled either by oxygen reduction process or pressure is shown to determine the water flow thus highlighting a unique water dynamics in randomly connected two-dimensional spaces.

via Nanotechweb

Related Stories

Mars: What lies beneath

Aug 13, 2013

There is much more to Mars than meets the eye. By using the radar on Mars Express, we can see several kilometres below the surface to see what lies beneath.

Graphene: Supermaterial goes superpermeable

Jan 26, 2012

Graphene is one of the wonders of the science world, with the potential to create foldaway mobile phones, wallpaper-thin lighting panels and the next generation of aircraft. The new finding at the University ...

Topographical approaches to measuring graphene thickness

Sep 28, 2012

(Phys.org)—Graphene has long shown potential for use in electronics, but difficulties in producing the material to a high enough quality has so far prevented the commercialisation of graphene-based devices.

Recommended for you

Nanomaterial outsmarts ions

Apr 22, 2014

Ions are an essential tool in chip manufacturing, but these electrically charged atoms can also be used to produce nano-sieves with homogeneously distributed pores. A particularly large number of electrons, ...

User comments : 0

More news stories

Male-biased tweeting

Today women take an active part in public life. Without a doubt, they also converse with other women. In fact, they even talk to each other about other things besides men. As banal as it sounds, this is far ...

High-calorie and low-nutrient foods in kids' TV

Fruits and vegetables are often displayed in the popular Swedish children's TV show Bolibompa, but there are also plenty of high-sugar foods. A new study from the University of Gothenburg explores how food is portrayed in ...