New forensic technique for analysing lipstick traces

Aug 08, 2013

(Phys.org) —A study by forensic scientists at the University of Kent has established a new way of identifying which brand of lipstick someone was wearing at a crime scene without removing the evidence from its bag, thereby avoiding possible contamination.

Using a technique called Raman spectroscopy, which detects laser light, will be able to analyse lipstick marks left at a crime scene, such as on glasses, a tissue, or , without compromising the continuity of evidence as the sample will remain isolated.

Analysis of lipstick traces from crime scenes can be used to establish physical contact between two individuals, such as a victim and a suspect, or to place an individual at a crime scene.

The new technique is particularly significant for forensic science as current analysis of lipstick traces relies on destructive or human opinion.

Professor Michael Went of the University's School of Physical Sciences said: 'Continuity of evidence is of paramount importance in forensic science and can be maintained if there is no need to remove it from the bag. Raman spectroscopy is ideal as it can be performed through transparent layers, such as evidence bags. For forensic purposes Raman spectroscopy also has the advantages that microscopic samples can be analysed quickly and non-destructively.'

Raman spectroscopy is a process involving light and vibrational energy of . When a material - in this case lipstick - scatters light, most of the light is scattered at its original wavelength but a very small proportion is scattered at altered wavelengths due to changes in vibrational energy of the material's molecules. This light is collected using a microscope to give a Raman spectrum which gives a characteristic vibrational fingerprint which can be compared to spectra of lipsticks of various types and brands. Hence it is possible to determine identity of the lipstick involved.

Research into applying the same method on other types of cosmetic evidence, such as foundation powders, eye-liners and skin creams is also underway.

The study, titled 'Application of Raman spectroscopy for the differentiation of lipstick traces', Fatma Salahioglu, Michael J. Went and Stuart J. Gibson, is published in the Royal Society of Chemistry journal.

Explore further: A refined approach to proteins at low resolution

add to favorites email to friend print save as pdf

Related Stories

Chemists offer law enforcement crime solving tool

Jun 19, 2012

(Phys.org) -- University at Albany researchers have developed a method to determine the caliber and type of weapon used in a crime by analyzing gunshot residue (GSR). Using near-infrared (NIR) Raman microspectroscopy ...

Shedding new light on cancer

Jan 22, 2010

(PhysOrg.com) -- Researchers at the University of St Andrews have developed a powerful technique that could allow earlier cancer detection.

Recommended for you

A refined approach to proteins at low resolution

18 hours ago

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

20 hours ago

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

Smartgels are thicker than water

21 hours ago

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0