From lectures to explosives detection: Laser pointer identifies dangerous chemicals in real-time

October 10, 2012, Optical Society of America
This is a schematic drawing of the Raman spectrometer, including a laser pointer, dichroic mirror, prism, objective, x,y motorized translational stage, long wavepass edge filter, lens and a detector (spectrometer/intensified charge-coupled device). Credit: Ilana Bar, Ben Gurion University of the Negev

By using an ordinary green laser pointer, the kind commonly found in offices and college lecture halls, an Israeli research team has developed a new and highly portable Raman spectrometer that can detect extremely minute traces of hazardous chemicals in real time. The new sensor's compact design makes it an excellent candidate for rapid field deployment to disaster zones and areas with security concerns.

The researchers will present their findings at Laser Science XXVIII—the American Physical Society Division of Laser Science's Annual Meeting—collocated with the Optical Society's (OSA) Annual Meeting, Frontier in Optics (FiO), taking place in Rochester, N.Y. next week.

Raman spectrometers rely on highly focused at precise wavelengths to illuminate small samples of materials. Very sensitive detectors then study the spectra of light that has been re-emitted, or scattered, by the sample. Most of this retains its original frequency or color, but a very small percentage of that light is shifted ever so slightly to higher or lower wavelengths, depending on the unique vibrational modes of the sample being studied. By comparing the shifted and the original wavelengths, it's possible to determine the precise chemicals present in the sample.

The researchers brought this capability down to size by constructing their using a low-power and low-cost commercial green laser pointer. The green laser's relatively short helped to improve the detection of the inherently weak Raman signal. The spectrometer also has the capability to first scan the entire sample optically, sweeping from side to side, to locate individual particles of interest – a task usually performed by large and cumbersome Raman microscopes.

"Since the overall system is modular, compact, and can be readily made portable, it can be easily applied to the detection of different compounds and for of objects that are contaminated with drugs, explosives, and particularly explosive residues on latent fingerprints," said Ilana Bar, a researcher with the Department of Physics at Ben-Gurion University of the Negev in Israel. "With proper investment this system could be deployed quite quickly as a consumer product." Other members of the research team include Itamar Malka, Alona Petrushansky, and Salman Rosenwaks.

Explore further: Finding explosives with laser beams

More information: Presentation LTh3I.3, "Detection of Explosives and Latent Fingerprint Residues Utilizing Laser Pointer Based Raman Spectroscopy," takes place Thursday, Oct. 18 at 2:30 p.m. EDT at the Rochester Riverside Convention Center in Rochester, N.Y.

Related Stories

Finding explosives with laser beams

February 27, 2012

Scientists at Vienna University of Technology have found a way to detect chemicals over long distances, even if they are enclosed in containers.

NRL Develops Technique To Speed Detection Process

February 15, 2010

( -- Researchers at the Naval Research Laboratory are developing a device to enable rapid detection and identification of bacteria, chemicals, and explosives in the environment or on the battlefield.

Taking a closer look at plaque

October 26, 2010

A team of University of Rochester scientists is using the technique of Raman spectroscopy to study two common dental plaque bacteria, Streptococcus sanguis and mutans. The relative balance of the two may be an indicator of ...

Laser Goes Tubing for Faster Body-Fluid Tests

April 2, 2007

University of Rochester researchers announce in the current issue of Applied Optics a technique that in 60 seconds or less measures multiple chemicals in body fluids, using a laser, white light, and a reflective tube. The ...

Identifying gems and minerals on Earth and on Mars

March 10, 2006

It'll be a snap to identify gemstones once Robert Downs finishes his library of spectral fingerprints for all the Earth's minerals. Downs is almost halfway there. So far, the associate professor of geosciences at The University ...

ORNL nanoprobe creates world of new possibilities

July 15, 2004

A technology with proven environmental, forensics and medical applications has received a shot in the arm because of an invention by researchers at the Department of Energy's Oak Ridge National Laboratory. ORNL's nanoprobe, ...

Recommended for you

Neutrons help demystify multiferroic materials

March 19, 2018

Materials used in electronic devices are typically chosen because they possess either special magnetic or special electrical properties. However, an international team of researchers using neutron scattering recently identified ...

Designing diamonds for medical imaging technologies

March 19, 2018

Japanese researchers have optimized the design of laboratory-grown, synthetic diamonds. This brings the new technology one step closer to enhancing biosensing applications, such as magnetic brain imaging. The advantages of ...

Taking MRI technology down to micrometer scales

March 19, 2018

Millions of magnetic resonance imaging (MRI) scans are performed each year to diagnose health conditions and perform biomedical research. The different tissues in our bodies react to magnetic fields in varied ways, allowing ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Oct 11, 2012
This is an older technology, and has been done well by American coumpanies like Delta Nu and Ahura for years now

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.