Bioengineer builds molecular 'switch' to reprogram control pathways in cells

Aug 16, 2013 by Tom Abate
Christina Smoke and her colleagues have developed Amodular technology that uses three biological components to control a signaling pathway inside a cell.

(Phys.org) —A Stanford University bioengineer has helped develop a technology that can tweak the control systems that regulate the inner workings of cells, pointing the way toward future medical interventions that could switch off diseased states or turn on healthy processes.

The paper, published today in Science Express, describes a biological tool that senior author Christina Smolke, PhD, associate professor of bioengineering, has dubbed a molecular network diverter.

This molecular diverter utilizes the concerted action of three biological sub-systems to redirect signaling pathways— of that orchestrate the .

The experiments described by Smolke and her collaborators—Kate Galloway, PhD, of the California Institute of Technology, and Elisa Franco, PhD, assistant professor of mechanical engineering at University of California-Riverside—were performed on .

But the principles and practices embodied in the molecular network diverter apply to signaling pathways that control the development, reproduction and death of all cells. When these signaling pathways go awry in humans, for instance, such malfunctions can cause many as well as other diseases.

"We're doing this in yeast, but there's a lot of conservation, or similarity, of these pathways in higher organisms," Smolke said. "The next step, now that we've shown this in simpler systems, is to take this technology into human cell cultures."

The team's initial goal was to control the mating behavior of yeast, an activity that, in nature, is influenced by the presence or absence of pheromones, which are naturally occurring odorless substances that can trigger responses from the opposite sex.

In a series of experiments, Smolke and her collaborators tried various techniques to induce or inhibit yeast mating behavior irrespective of pheromone activity.

At first they found that the various techniques they used canceled each other out. But through computational modeling and fine-tuning of the chemical components they were able to build the molecular network diverter by joining three techniques into a unified technology whose elements they call:

  • The transducer, an RNA-based system that gathers information about the chemical environment of the cell.
  • The promoter, the molecular agent that helps to initiate and modulate the desired change.
  • The pathway regulator, which finds the appropriate point in the cell's to make the intervention.

"The pieces that we used to build this control system existed," Smolke said. "Combining them in a modular fashion into this molecular network diverter is what's new."

By chemically tuning this molecular network diverter in different ways, the researchers were able to: induce yeast to mate in the absence of pheromones; inhibit even when pheromones were present; and engineer cell lines that contained this pathway-regulating mechanism in a neutral state until and unless researchers flipped this chemical switch.

"We've created this tool, and the tool itself is the control system and the methodology of implementing it," Smolke said, adding that based on this proof of principle "we're able to propose other generalized design strategies."

Her assessment was echoed by James Collins, PhD, a professor of biomedical engineering at Boston University and a researcher with the Wyss Institute at Harvard University.

Collins, who was not associated with the experiment, said the paper demonstrated a new, systems-approach toward building tools for .

"It shows that we don't need to start from scratch. We can achieve advances by harnessing components that we already have," said Collins, who described the work as "an application of engineering principles to cell biology" and "an important advance for synthetic biology."

Explore further: Scientists discover molecular communication network in human stem cells

Related Stories

Biomedical research reveals secrets of cell behavior

Jul 01, 2013

(Phys.org) —Knowing virtually everything about how the body's cells make transitions from one state to another – for instance, precisely how particular cells develop into multi-cellular organisms – would be a major ...

Recommended for you

Cell division speed influences gene architecture

3 hours ago

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

Secret life of cells revealed with new technique

5 hours ago

(Phys.org) —A new technique that allows researchers to conduct experiments more rapidly and accurately is giving insights into the workings of proteins important in heart and muscle diseases.

In the 'slime jungle' height matters

5 hours ago

(Phys.org) —In communities of microbes, akin to 'slime jungles', cells evolve not just to grow faster than their rivals but also to push themselves to the surface of colonies where they gain the best access ...

Queuing theory helps physicist understand protein recycling

Apr 22, 2014

We've all waited in line and most of us have gotten stuck in a check-out line longer than we would like. For Will Mather, assistant professor of physics and an instructor with the College of Science's Integrated Science Curriculum, ...

Cow manure harbors diverse new antibiotic resistance genes

Apr 22, 2014

Manure from dairy cows, which is commonly used as a farm soil fertilizer, contains a surprising number of newly identified antibiotic resistance genes from the cows' gut bacteria. The findings, reported in mBio the online ...

User comments : 0

More news stories

Ravens understand the relations among others

Like many social mammals, ravens form different types of social relationships – they may be friends, kin, or partners and they also form strict dominance relations. From a cognitive perspective, understanding ...