AC or DC? Two newly described electric fish from the Amazon are wired differently

Aug 28, 2013
This is an image of the two new species with their electric organ discharges (EODs). Brachyhypopomus walteri (top) has a longer, thinner tail and produces an EOD with both positive and negative phases. Brachyhypopomus bennetti (bottom) has a shorter, thicker tail and produces monophasic EODs. Credit: John P. Sullivan

Much as human siblings can have vastly different personalities despite their similar resemblance and genetics, two closely related species of electric fish from the Amazon produce very different electric signals. These species, new to science, are described in the open access journal ZooKeys by Drs. John Sullivan of Cornell University in Ithaca, New York, Jansen Zuanon of the National Amazonian Research Institute in Manaus, Brazil and Cristina Cox Fernandes of the University of Massachusetts, Amherst.

The two new species are bluntnose knifefish, genus Brachyhypopomus, that live under rafts of unrooted grasses and water hyacinth along the margins of the Amazon River called "floating meadows." These are weakly electric relatives of South America's famous electric "eel" (not a true eel) that can produce strong electric discharges of hundreds of volts. By contrast, these weakly fishes produce pulses of only a few hundred millivolts from an organ under the body that extends out onto a filamentous tail. Nearby objects in the water create distortions to the electric field that are sensed by on the fishes' skin. In this way, they are able to "electrolocate" through their complex aquatic environment at night. Their short electric pulses, too weak to be sensed by touch, are also used to communicate the sender's species identity and gender to other electric fishes.

"The most striking differences between these two similar species have to do with their electric organs and their electric organ discharges, or EODs," says lead author John Sullivan, Curatorial Affiliate at the Cornell University Museum of Vertebrates. "If it weren't for these traits, we undoubtedly would have thought they were a single species. The one we are calling Brachyhypopomus bennetti has a huge electric organ, a short, fat tail, and produces a monophasic EOD; the other one that we're calling Brachyhypopomus walteri has a more typical electric organ, a long thin tail, and a more typical biphasic EOD."

This video is not supported by your browser at this time.
This is an audio recording of the electric organ discharges of Brachyhypopomus walteri made by placing electrodes attached to an amplifier at the head and tail of the fish. These fishes can be located in the field with such an amplifier and identified to species without ever seeing the fish by means of visualizing the signal on an oscilloscope. Credit: John P. Sullivan

It turns out the monophasic EOD of the new species Brachyhypopomus bennetti is highly unusual. Most species of this kind of knifefish produce EOD waveforms with both a positive and negative phase to them, as viewed on an oscilloscope: essentially alternating current. In this way, there is no net positive or negative current generated by the signal. "All of this fish's relatives, including its newly described sister species, have biphasic EODs," says Sullivan. "For that reason we know that this trait evolved in this species' lineage. The interesting question is why."

One widely accepted idea is that the biphasic EOD with its reduced amount of direct current (DC) is an adaptation to hide from predatory fish, like catfishes and electric eels, that are equipped with a type of electroreceptor that are sensitive to DC. So why would one species seemingly court danger by evolving a monophasic EOD?

This video is not supported by your browser at this time.
This is an audio recording of resting electric organ discharge of Brachyhypopomus bennetti. Credit: John P. Sullivan

The only other in the Amazon with a similar monophasic EOD is the fearsome electric eel. This fish has both a weak EOD used for electrolocation and communication as well as a much more powerful EOD used to stun prey and for defense. A theory proposed by Dr. Philip Stoddard of Florida International University contends that, in much the same way that the Viceroy butterfly—a species tasty to birds—evolved wing color patterns to mimic the distasteful Monarch butterfly, the harmless B. bennetti 's EOD waveform evolved to mimic that of the electric eel, a species electroreceptive predatory fishes may have learned to avoid.

In this paper, the authors suggest an additional possible benefit of of B. bennetti's monophasic EOD. Unlike biphasic species, B. bennetti's EOD waveform is largely unaffected after their tails are partially bitten off by predators, a common type of injury in this species. They suggest that this species' preference for floating meadow habitat near river channels may put them at particularly high risk of predation and 'tail grazing' by other fishes.

The authors show that the EOD waveforms of Brachyhypopomus species with biphasic EODs are severely altered after such injuries, whereas those of B. bennetti are not. "Any change to the EOD waveform likely impairs electroreception and communication and the monophasic EOD waveform may have been favored by natural selection in a that suffers a lot of tail injuries," says Sullivan. "Selection for both EOD stability and mimicry of electric eels could be going on simultaneously…both hypotheses make predictions that should be tested," said Sullivan.

Explore further: Scientists target mess from Christmas tree needles

More information: Sullivan JP, Zuanon J, Cox Fernandes C (2013) Two new species and a new subgenus of toothed Brachyhypopomus electric knifefishes (Gymnotiformes, Hypopomidae) from the central Amazon and considerations pertaining to the evolution of a monophasic electric organ discharge. ZooKeys 327: 1–34. DOI: 10.3897/zookeys.327.5427

add to favorites email to friend print save as pdf

Related Stories

Fish use electric signals to find the right mate

Jun 11, 2009

Electric knifefish, close relatives of the electric eel, navigate and communicate by projecting electric fields around their bodies. Research at University of Toronto is clarifying how this sense has evolved, as well as providing ...

Electric fish charges up research on animal behavior

Apr 10, 2012

An electric eel can generate enough current to stun its prey, just like a Taser. Weakly electric fish can also generate electricity, but not enough to do any harm. "Weakly electric fish are unique in that they produce and ...

Recommended for you

Keep dogs and cats safe during winter

9 hours ago

(HealthDay)—Winter can be tough on dogs and cats, but there are a number of safe and effective ways you can help them get through the cold season, an expert says.

Scientists target mess from Christmas tree needles

Dec 26, 2014

The presents are unwrapped. The children's shrieks of delight are just a memory. Now it's time for another Yuletide tradition: cleaning up the needles that are falling off your Christmas tree.

The ants that conquered the world

Dec 24, 2014

About one tenth of the world's ants are close relatives; they all belong to just one genus out of 323, called Pheidole. "If you go into any tropical forest and take a stroll, you will step on one of these ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.