Technology could bring high-end solar to the masses

July 25, 2013 by Sarah Yang

Engineers at the University of California, Berkeley, have developed an inexpensive new way to grow thin films of a material prized in the semiconductor and photovoltaic industries, an achievement that could bring high-end solar cells within reach of consumer pocketbooks.

The work, led by Ali Javey, UC Berkeley associate professor of electrical engineering and computer sciences, is described in a paper published today (Wednesday, July 24) in Scientific Reports, Nature's peer-reviewed open access journal.

"Performance is everything in the solar cell industry, but performance at a reasonable cost is key," said Javey, who is also a faculty scientist at the Lawrence Berkeley National Laboratory. "The techniques we are reporting here should be a game-changer for III-V , as well as for LEDs."

Top of the line are made from a class of material known as III-V (pronounced "three-five") compounds, known for their superior efficiency at converting light into power. However, the complex manufacturing requirements for III-V materials make them up to 10 times more expensive than silicon, limiting their use to military applications and NASA satellites, the researchers said.

The UC Berkeley researchers demonstrated that , a III-V compound, could be grown on thin sheets of metal foil in a process that is faster and cheaper than traditional methods, yet still comparable in opto-electronic characteristics.

The paper's co-lead authors from Javey's lab are Rehan Kapadia, a recent Ph.D. graduate, and Zhibin Yu, a post-doctoral researcher.

Explore further: Nanopillars Promise Cheap, Efficient, Flexible Solar Cells

More information:

Related Stories

Nanopillars Promise Cheap, Efficient, Flexible Solar Cells

July 9, 2009

( -- Researchers at the U.S. Department of Energy's Lawrence Berkeley National Laboratory and the University of California at Berkeley have demonstrated a way to fabricate efficient solar cells from low-cost and ...

A new twist for nanopillar light collectors

November 16, 2010

Sunlight represents the cleanest, greenest and far and away most abundant of all energy sources, and yet its potential remains woefully under-utilized. High costs have been a major deterrant to the large-scale applications ...

Ultrathin alternative to silicon for future electronics

November 22, 2010

There's good news in the search for the next generation of semiconductors. Researchers with the U.S. Department of Energy's Lawrence Berkeley National Laboratory and the University of California Berkeley, have successfully ...

Recommended for you

Physicists develop new technique to fathom 'smart' materials

November 26, 2015

Physicists from the FOM Foundation and Leiden University have found a way to better understand the properties of manmade 'smart' materials. Their method reveals how stacked layers in such a material work together to bring ...

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.