Technology could bring high-end solar to the masses

Jul 25, 2013 by Sarah Yang

Engineers at the University of California, Berkeley, have developed an inexpensive new way to grow thin films of a material prized in the semiconductor and photovoltaic industries, an achievement that could bring high-end solar cells within reach of consumer pocketbooks.

The work, led by Ali Javey, UC Berkeley associate professor of electrical engineering and computer sciences, is described in a paper published today (Wednesday, July 24) in Scientific Reports, Nature's peer-reviewed open access journal.

"Performance is everything in the solar cell industry, but performance at a reasonable cost is key," said Javey, who is also a faculty scientist at the Lawrence Berkeley National Laboratory. "The techniques we are reporting here should be a game-changer for III-V , as well as for LEDs."

Top of the line are made from a class of material known as III-V (pronounced "three-five") compounds, known for their superior efficiency at converting light into power. However, the complex manufacturing requirements for III-V materials make them up to 10 times more expensive than silicon, limiting their use to military applications and NASA satellites, the researchers said.

The UC Berkeley researchers demonstrated that , a III-V compound, could be grown on thin sheets of metal foil in a process that is faster and cheaper than traditional methods, yet still comparable in opto-electronic characteristics.

The paper's co-lead authors from Javey's lab are Rehan Kapadia, a recent Ph.D. graduate, and Zhibin Yu, a post-doctoral researcher.

Explore further: A stretchy mesh heater for sore muscles

More information: www.nature.com/srep/2013/130724/srep02275/full/srep02275.html

Related Stories

Ultrathin alternative to silicon for future electronics

Nov 22, 2010

There's good news in the search for the next generation of semiconductors. Researchers with the U.S. Department of Energy's Lawrence Berkeley National Laboratory and the University of California Berkeley, ...

A new twist for nanopillar light collectors

Nov 16, 2010

Sunlight represents the cleanest, greenest and far and away most abundant of all energy sources, and yet its potential remains woefully under-utilized. High costs have been a major deterrant to the large-scale ...

Recommended for you

A stretchy mesh heater for sore muscles

Jul 03, 2015

If you suffer from chronic muscle pain a doctor will likely recommend for you to apply heat to the injury. But how do you effectively wrap that heat around a joint? Korean Scientists at the Center for Nanoparticle ...

Polymer mold makes perfect silicon nanostructures

Jul 03, 2015

Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.