Scientists reveal structure of a supercooled liquid

Jul 05, 2013
The hot droplet is suspended in a vacuum between two electrodes. While the droplet cools down or is heated up, its structure is continuously monitored by exposing it to radiation from the synchrotron source. Credit: Institute of Materials Physics in Space at the German Aerospace Centre (DLR) in Cologne, Germany.

If a liquid metal alloy is cooled slowly it will eventually form a solid phase. Before it solidifies, however, the liquid undergoes a liquid-liquid transition to a phase in which it has the same concentration but a more strongly ordered structure. This structure has now been demonstrated for the first time by material scientists from Saarland University in a collaborative project with the German Aerospace Centre and the Leibniz Centre for Solid State and Materials Research in Dresden.

The experimental work, which was performed at the German Electron Synchrotron Facility (DESY) in Hamburg, involved levitating hot metal droplets and observing them as they cooled by irradiating them with x-rays from one of the world's strongest x-ray sources. The research work is funded by the German Research Foundation (DFG) and the results have just been published in Nature Communications.

Supercooled liquids demonstrate some interesting phenomena when they are irradiated with an extremely bright x-ray source. Shuai Wei, a doctoral student in the Metallic Materials Group headed by Professor Ralf Busch at Saarland University, has been able to observe such phenomena together with research colleagues from DLR are IFW. 'We have been able to show for the first time that a liquid that is being cooled transforms into a liquid of the same concentration but of greater order, before further cooling initiates crystallisation,' said Shuai Wei, who graduated with a Bachelor's degree in physics in Shanghai and has completed his Master's thesis under the supervision of Professor Busch. Busch and his team are particularly interested in liquid metals that, when cooled, eventually freeze to form bulk metallic glasses. As , these exhibit some very interesting properties.

In order to study the 'liquid-liquid transition' in metals in detail, the scientists made use of the experimental facilities at the large-scale research facility DESY in Hamburg to create positively charged metal droplets about 2 to 3 millimetres in diameter. These droplets were then levitated in vacuum between two electrodes. Shuai Wei explained the advantage of this type of electrostatic levitation: 'When the droplet is suspended in an electric field, it has no contact with its environment, so no crystal nucleation can occur and the process of crystallisation is slowed down.' The suspended droplets were then cooled by several hundreds of Kelvin during which time they were illuminated with particularly intense x-rays from the 'Doris III' synchrotron beamline at DESY. 'Each image was completed within one second – in a "normal" x-ray device, the image would have taken several hours to record,' explained Ralf Busch. 'This allowed us to continuously monitor the cooling process and we detected phenomena within the metal droplets that would otherwise have been invisible. For instance, we observed that their structure exhibits an increasing degree of order although the density of the material remains constant.'

Shuai Wei added that earlier work had already indicated that the viscosity and energy content of the liquid also change during the cooling process. He summarized the findings of his research work as follows: 'By demonstrating this structural modification, we have been able to show that within the liquid phase a 'fragile' less-ordered liquid is transformed into a so-called 'strong' liquid with a higher degree of order.' These processes were detectable at temperatures in the range 1200 K (927 °C) to 800 K (527 °C).

'The results help to provide us with a better understanding of how a material reorganizes when it undergoes cooling,' said Shuai Wei. The special properties associated with metallic glasses may enable the creation of higher performance materials. The young research scientist is already carrying out further experiments at the synchrotron facility's new 'Petra III" beamline, which according to DESY is the world's biggest and most brilliant storage ring x-ray source.

Explore further: Study helps uncover mechanism behind solid-solid phase transitions

More information: DOI: 10.1038/ncomms3083

Related Stories

Nanocrystals grow from liquid interface

May 17, 2013

An international collaboration of scientists has discovered a unique crystalizing behavior at the interface between two immiscible liquids that could aid in sustainable energy development.

New experiment opens window on glasses

Jun 10, 2013

( —For the first time, scientists have mapped the structure of a metallic glass on the atomic scale, bringing them closer to understanding where the liquid ends and the solid begins in glassy materials.

Researchers turn cement into metal

May 27, 2013

( —In a move that would make the Alchemists of King Arthur's time green with envy, scientists have unraveled the formula for turning liquid cement into liquid metal. This makes cement a semi-conductor ...

A new way of making glass

Nov 09, 2012

(—A new way to make glass has been discovered by a collaboration of researchers at the Universities of Düsseldorf and Bristol using a method that controls how the atoms within a substance are ...

Recommended for you

New complex oxides could advance memory devices

Sep 17, 2014

The quest for the ultimate memory device for computing may have just taken an encouraging step forward. Researchers at The City College of New York led by chemist Stephen O'Brien have discovered new complex ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

3 / 5 (1) Jul 05, 2013
The experimental work, which was performed at the German Electron Synchrotron Facility (DESY) in Hamburg, involved levitating hot metal droplets and observing them as they cooled by irradiating them with x-rays from one of the world's strongest x-ray sources.

Now if that doesn't sound (and look) more awesome than most "gee-wizzery" in Hollywood sci-fi movies then I don't kow...

One could also go the other way and continually monitor metals as they cool via this method - and heat them up at any places where crystallization occurs prematurely - except for one. Thereby ensuring that there is only one crystallization locus and thus, potentially, creating a perfectly mono-crystalline structure.