Protons hop from one water molecule to another given suitable energy conditions

Jul 23, 2013
Model of a hydrogen bridge bond network in liquid water

Protons, as positively charged hydrogen ions, move very rapidly in water from one water molecule to the next, which is why the conductivity of water is relatively high. The principle of proton conduction in water has been known for 200 years and is named the Grotthuss mechanism after its discoverer, Theodor Grotthuss. It is based on the assumption that it is not that a single specific proton moving from one molecule to another; instead, there is cleavage of bonds.

One proton docks onto a molecule and this causes another proton to leave that molecule and bind to another molecule somewhere else. This mechanism has been compared to a 'bucket line' to explain the rapid diffusion of the individual protons. However, this concept oversimplifies the situation and belies the complexity of the structure of water.

Researchers from Zurich and Mainz have now been able to analyze the mechanism in more detail using theoretical calculations and have shown that the currently accepted picture of proton diffusion may need to be revised. "The simulation shows that the crossover from one water molecule to the next occurs more quickly than previously thought and then there is a rest period until the next crossover," said Professor Thomas D. Kühne of the Institute of Physical Chemistry at Johannes Gutenberg University Mainz (JGU), describing the results. These were published online on July 18, 2013 in the journal Proceedings of the National Academy of Sciences.

"We show that the diffusion of protons and hydroxide ions occurs during periods of intense activity involving concerted proton hopping, followed by periods of rest," wrote primary author Ali A. Hassanali of the Swiss Federal Institute of Technology Zurich in the publication. In the model of proton diffusion that researchers have now developed, the hydrogen bridge network is equivalent to an aggregation of closed rings. The resulting proton chains serve as a 'road' in the hydrogen bridge network that make possible long proton jumps across multiple hydrogen bridge bond formations. "The 'dance' around each other until they achieve an energetically favorable status. Only then will a proton hop along the 'road' to another molecule," explained Kühne. As a result, there is temporary formation of protonated water molecules with three protons.

In addition to the relevance of transfer in aqueous systems, the results may also be applicable to important biological systems such as enzymes and macromolecules.

Explore further: New pathway to valleytronics

More information: PNAS, 18. Juli 2013 DOI:10.1073/pnas.1306642110

Related Stories

Scientists examine proton radiography of brain mockup

Mar 26, 2013

Los Alamos researchers and German collaborators have investigated the application of giga-electron volt (GeV, or billion electron volts) energy proton beams for medical imaging in combination with proton ...

Recommended for you

Particle physicists discuss JUNO neutrino experiment

21 hours ago

The construction of the facilities for the JUNO neutrino experiment has been initiated with an official groundbreaking ceremony near the south Chinese city of Jiangmen. Involved in the Jiangmen Underground ...

New pathway to valleytronics

Jan 27, 2015

A potential avenue to quantum computing currently generating quite the buzz in the high-tech industry is "valleytronics," in which information is coded based on the wavelike motion of electrons moving through ...

New portable vacuum standard

Jan 26, 2015

A novel Portable Vacuum Standard (PVS) has been added to the roster of NIST's Standard Reference Instruments (SRI). It is now available for purchase as part of NIST's ongoing commitment to disseminate measurement ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

RobertKarlStonjek
not rated yet Jul 23, 2013
Pure water is not a conductor. I remember a test for water purifiers a friend was selling was to test the conductivity before and after purification ~ conduction drops dramatically.

See Wikipedia:
"Pure water has a low electrical conductivity, "
http://en.wikiped...ki/Water

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.