Protons hop from one water molecule to another given suitable energy conditions

Jul 23, 2013
Model of a hydrogen bridge bond network in liquid water

Protons, as positively charged hydrogen ions, move very rapidly in water from one water molecule to the next, which is why the conductivity of water is relatively high. The principle of proton conduction in water has been known for 200 years and is named the Grotthuss mechanism after its discoverer, Theodor Grotthuss. It is based on the assumption that it is not that a single specific proton moving from one molecule to another; instead, there is cleavage of bonds.

One proton docks onto a molecule and this causes another proton to leave that molecule and bind to another molecule somewhere else. This mechanism has been compared to a 'bucket line' to explain the rapid diffusion of the individual protons. However, this concept oversimplifies the situation and belies the complexity of the structure of water.

Researchers from Zurich and Mainz have now been able to analyze the mechanism in more detail using theoretical calculations and have shown that the currently accepted picture of proton diffusion may need to be revised. "The simulation shows that the crossover from one water molecule to the next occurs more quickly than previously thought and then there is a rest period until the next crossover," said Professor Thomas D. Kühne of the Institute of Physical Chemistry at Johannes Gutenberg University Mainz (JGU), describing the results. These were published online on July 18, 2013 in the journal Proceedings of the National Academy of Sciences.

"We show that the diffusion of protons and hydroxide ions occurs during periods of intense activity involving concerted proton hopping, followed by periods of rest," wrote primary author Ali A. Hassanali of the Swiss Federal Institute of Technology Zurich in the publication. In the model of proton diffusion that researchers have now developed, the hydrogen bridge network is equivalent to an aggregation of closed rings. The resulting proton chains serve as a 'road' in the hydrogen bridge network that make possible long proton jumps across multiple hydrogen bridge bond formations. "The 'dance' around each other until they achieve an energetically favorable status. Only then will a proton hop along the 'road' to another molecule," explained Kühne. As a result, there is temporary formation of protonated water molecules with three protons.

In addition to the relevance of transfer in aqueous systems, the results may also be applicable to important biological systems such as enzymes and macromolecules.

Explore further: Hide and seek: Sterile neutrinos remain elusive

More information: PNAS, 18. Juli 2013 DOI:10.1073/pnas.1306642110

Related Stories

Scientists examine proton radiography of brain mockup

Mar 26, 2013

Los Alamos researchers and German collaborators have investigated the application of giga-electron volt (GeV, or billion electron volts) energy proton beams for medical imaging in combination with proton ...

Recommended for you

Hide and seek: Sterile neutrinos remain elusive

3 hours ago

The Daya Bay Collaboration, an international group of scientists studying the subtle transformations of subatomic particles called neutrinos, is publishing its first results on the search for a so-called ...

Novel approach to magnetic measurements atom-by-atom

8 hours ago

Having the possibility to measure magnetic properties of materials at atomic precision is one of the important goals of today's experimental physics. Such measurement technique would give engineers and physicists an ultimate ...

Scientists demonstrate Stokes drift principle

11 hours ago

In nature, waves – such as those in the ocean – begin as local oscillations in the water that spread out, ripple fashion, from their point of origin. But fans of Star Trek will recall a different sort of wave pattern: ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

RobertKarlStonjek
not rated yet Jul 23, 2013
Pure water is not a conductor. I remember a test for water purifiers a friend was selling was to test the conductivity before and after purification ~ conduction drops dramatically.

See Wikipedia:
"Pure water has a low electrical conductivity, "
http://en.wikiped...ki/Water