Stop marine pollution to protect kelp forests

Jul 17, 2013

(Phys.org) —University of Adelaide marine biologists have found that reducing nutrient pollution in coastal marine environments should help protect kelp forests from the damaging effects of rising CO2.

The researchers have found a combined effect on kelp forests from and higher CO2, which could have a devastating impact on Australia's marine ecosystems.

"When we manipulated CO2 and nutrient levels in an experimental marine ecosystem we found the effect of both of them together was greater than the sum of their individual impacts," says Dr Bayden Russell, of the University's Environment Institute and Senior Lecturer in the School of Earth and Environmental Sciences.

The project, by PhD student Laura Falkenberg, found that removing the nutrients from the water removed the combined effect, improving the environment for kelp growth.

Kelp forests are one of the most productive marine ecosystems in colder waters and form the basis of food webs for many fish and other marine life. "They are the of colder waters," Dr Russell says.

"Increased nutrients from agriculture, wastewater discharge and stormwater on urban coasts are already causing damage to kelp populations in our coastal waters but our research shows that, as CO2 rises the impacts will be much worse and we could lose these really important ," says Dr Russell.

The researchers grew kelp in experimental tanks floating in the North Haven Boat Harbour with different combinations of added nutrients and CO2. They measured the growth of which is a precursor to loss. As the turf algae grows it displaces the kelp.

"When we removed the nutrients but kept the CO2 high we found that after six months we'd reduced the turf algae by 75% - we'd removed that synergistic effect," says Dr Russell.

"As we face a future of climate change and higher CO2 levels, there is considerable evidence that our marine ecosystems are going to be severely impacted. We won't be able to manage those global factors at the local level, but what we can manage is local nutrient pollution into our seas from urban areas," he says.

"This work has shown that by reducing the nutrients we should be able to substantially reduce the impact of rising CO2. The bottom line is that we need to reduce the nutrient pollution now."

The research is continuing with larger tanks, known as mesocosms, set up at West Beach and in natural marine areas where CO2 seeps into the water from seabed volcanic activity in New Zealand.

Explore further: Landmark fracking study finds no water pollution

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Dutch unveil big plan to fight rising tides

1 hour ago

The Netherlands on Tuesday unveiled a multi-billion-euro, multi-decade plan to counter the biggest environmental threat to the low-lying European nation: surging seawater caused by global climate change.

Drought hits Brazil coffee harvest

4 hours ago

Coffee output in Brazil, the world's chief exporter, will slide this year after the worst drought in decades, agricultural agency Conab said Tuesday.

Landmark fracking study finds no water pollution

5 hours ago

The final report from a landmark federal study on hydraulic fracturing, or fracking, has found no evidence that chemicals or brine water from the gas drilling process moved upward to contaminate drinking water at one site ...

Politics divide coastal residents' views of environment

7 hours ago

From the salmon-rich waters of Southeast Alaska to the white sand beaches of Florida's Gulf Coast to Downeast Maine's lobster, lumber and tourist towns, coastal residents around the U.S. share a common characteristic: ...

User comments : 0