Researchers use DNA origami technique to build nanoantennas with docking sites

July 22, 2013 by Bob Yirka report
Researchers use DNA origami technique to build nanoantennas with docking sites

A team of researchers working at Germany's Technische Universität Braunschweig has succeeded in using a previously known DNA origami construction technique to build a nanoantenna with a docking site. First published in the journal Science, the paper written by the team has now been made publicly available for open access.

DNA scaffolding has in recent years been developed to allow for orienting single molecules in useful ways. One of those has resulted in the creation of what is known as DNA —where DNA strands are folded in certain ways to create three dimensional nano-sized objects. In this new effort, the team used the technique to place two astride a protein pillar creating a hotspot that brightens fluorescent signals in zeptoliter volumes. The result is a tall pillar held erect on a using DNA strands that can be used to hold single molecules.

The flat surface was made of a biotin-. The pillar (also made of a protein) is 220 nm long and 15 nm in diameter. It was held in place by strands of DNA. Two (80 to 100nm diameter) were suspended (again by DNA strands) on each side of the pillar (23 nm apart) and were used as an antenna to focus light on a hotspot between them. A fluorescent dye was placed into that hotspot and was used as an optically active source—its purpose was to report the degree of fluorescent enhancement—which was the purpose of the antenna.

The antenna the team built demonstrates one way that DNA origami is being used to build a scaffold for holding molecules in three-. The hope is that it will lead to what is known as atomically precise manufacturing—where nano-sized components could be manufactured in bulk. An antenna such as the one built in this new effort, allows for focusing light to a very small volume allowing for investigating molecules in a way that is up to 100 times more precise than conventional lenses. What's most interesting about the antenna, of course, is that it's held together by DNA strands that have been "programmed" to spontaneously wrap themselves around the antenna in just the right way to hold everything in place.

The researchers next plan to conduct experiments to see if DNA origami structures can also be used to allow for more precise control of chemical reactions.

Explore further: Bio-inspired nanoantennas for light emission

More information: Science 338, 506 (2012); DOI: 10.1126/science.1228638

Related Stories

Bio-inspired nanoantennas for light emission

July 30, 2012

Just as radio antennas amplify the signals of our mobile phones and televisions, the same principle can apply to light. For the first time, researchers from CNRS and Aix Marseille Université have succeeded in producing ...

Artificial ion channels created using DNA origami

November 16, 2012

(Phys.org)—Researchers in Germany and the US have used scaffolded DNA origami techniques to create ion channels or pores that span and penetrate lipid membranes and mimic natural ion channels.

DNA and quantum dots: All that glitters is not gold

January 25, 2013

(Phys.org)—A team of researchers at the National Institute of Standards and Technology (NIST) has shown that by bringing gold nanoparticles close to the dots and using a DNA template to control the distances, the intensity ...

New system to improve DNA sequencing

April 3, 2013

(Phys.org) —A sensing system developed at Cambridge is being commercialised in the UK for use in rapid, low-cost DNA sequencing, which would make the prediction and diagnosis of disease more efficient, and individualised ...

DNA constructs antenna for solar energy

June 19, 2013

Researchers at Chalmers University of Technology have found an effective solution for collecting sunlight for artificial photosynthesis. By combining self-assembling DNA molecules with simple dye molecules, the researchers ...

Recommended for you

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.