Discovery of the missing link in evolution of bioluminescence

Jul 18, 2013

With bioluminescence—the process that makes fireflies glow—now a mainstay in medical research, scientists are reporting discovery of a "missing link" of its evolution, which represents one of the deepest mysteries about bioluminescence. It paves the way toward development of new enzymes that glow in different colors and are 10, 100 or 1,000 times brighter, they say in ACS' journal Biochemistry.

V.R. Viviani and colleagues focus on luciferases, enzymes critical in producing the bioluminescent effect in , and other creatures. Scientists have known that bioluminescence originated 400 million years ago in jellyfish, and more recently in fireflies and other beetles. But how? That has been a mystery, the source of controversy and the key to developing more versatile bioluminescent enzymes for medicine and biology.

The scientists describe discovery of a "luciferase-like" enzyme in mealworm larvae that represents a missing link between the non-luminescent enzymes of the past and the "bright," modern-day luciferase enzymes in fireflies. Viviani's team discovered a structural switch that turns these kinds of "dark" enzymes into luciferases, and then used that information to develop a totally new luciferase that can produce an orange glow—the first case of development of a luciferase from other distantly related enzymes with other .

The work results open up new possibilities in biotechnology with the ability to engineer new luciferases from distantly related . It could also help scientists develop brighter luciferases with an array of new colors, they say.

Explore further: A refined approach to proteins at low resolution

More information: pubs.acs.org/doi/abs/10.1021/bi400141u

Related Stories

Researchers use nanotechnology to harness power of fireflies

Jun 15, 2012

What do fireflies, nanorods and Christmas lights have in common? Someday, consumers may be able to purchase multicolor strings of light that don't need electricity or batteries to glow. Scientists in Syracuse University's ...

Recommended for you

A refined approach to proteins at low resolution

Sep 19, 2014

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

rkilburn81
1 / 5 (1) Jul 20, 2013
"luciferase." While I realize it is derived from the latin adjective meaning "light-bringing", why do I feel like the scientist who came up with this name was just trolling Christians?