Baby fish 'steer by the sun'

Jul 08, 2013

(Phys.org) —Baby coral reef fishes find their way home using the sun and a body clock to steer by.

A remarkable discovery by an international team of has found that tiny , no more than a few millimetres in length, avoid getting lost and eaten in the vast ocean and navigate their way to safety using a ''.

When baby fish hatch from the egg on a reef they are swept away by currents into the open ocean – and an epic struggle begins as these tiny creatures seek their way back to the home reef, or another nearby, where they can settle in safety, explains Professor Mike Kingsford of the ARC Centre of Excellence for Coral Reef Studies and James Cook University.

"Failure to get back to a reef spells death for baby fish, and we've known for some time that they use their senses of hearing and smell to locate the reef and head back to it.

"The fact that we've shown they also have a sun compass in their tiny heads and can orient themselves according to the sun's position through the day provides the missing link in their navigational toolkit," he says.

The researchers tested their theory using a small plastic swimming pool and baby cardinal fishes at One Tree Island on Australia's Great Barrier Reef. In a matter of seconds the fry turned and headed in a south southeasterly direction – and kept on heading that way even when the researchers turned their pool.

"The currents that sweep the baby fish off the reef generally set in a north-northwesterly direction, so to get back to it the fish have to swim SSE. The big question was: how did they know where that point of the compass lay, and keep to it?" Prof. Kingsford says.

"Though smaller than a good many insects, are surprisingly strong swimmers and they can push up against the current for several days, covering distances of twenty kilometres or even more. The mystery was how they maintained a correct orientation during this life-or-death journey."

However when the researchers 'clock shifted' the little fish six hours back in time, they were fooled by the position of the sun and began automatically to swim in an opposite direction – to the NNW. Clock shifting involves putting the fish in a dark room and using artificial lights to reset their body clocks to a time six hours earlier.

"Since they are swept too far from the home reef to smell or hear it, this provides strong evidence they steer mainly by the sun, making compensatory allowances as it moves across the sky.

"This is a complicated task which quite a few humans would struggle to perform – but which baby coral reef fish seem to accomplish with few difficulties."

The researchers tested the fishes' orientation on both sunny and cloudy days, finding that they were more precise in their navigation under clear skies. They also found the fishes' directional instincts were at their weakest around noon when the sun was directly overhead and thus provided less information to steer by.

"The tests … demonstrate that the fish have an internal clock (''zeitgeber'') that they use as part of a time-compensated sun compass to maintain their SSE heading," the researchers concluded in their published paper.

"Since the time-compensation required for a sun compass needs to be learned (because the exact movement of the varies greatly with season and latitude), it is likely that this learning takes place during the early dispersal phase." (ie. soon after the fish larvae drift off their home .)

They note that certain birds and sea turtles are born with an inbuilt sense of direction, and it is possible the baby cardinal fish, too, inherit the instinct to head SSE – back towards home.

Their paper 'Sun Compass Orientation Helps Coral Reef Fish Larvae Return to Their Natal Reef' by Henrik Mouritsen, Jelle Atema, Michael J. Kingsford and Gabriele Gerlach appears in the open access journal PLOS One of June 2013.

Explore further: Underwater pictures shared innovatively for science collaboration

add to favorites email to friend print save as pdf

Related Stories

Boat noise stops fish finding home

Jun 28, 2013

(Phys.org) —Boat noise disrupts orientation behaviour in larval coral reef fish, according to new research from the Universities of Bristol, Exeter and Liège. Reef fish are normally attracted by reef sound ...

Carbon dioxide affecting fish brains: study

Jan 16, 2012

Rising human carbon dioxide emissions may be affecting the brains and central nervous systems of sea fish, with serious consequences for their survival, according to new research.

Jumping snails leap over global warming

Jul 04, 2013

Snails in the Great Barrier Reef literally jump for their life to avoid predators. But will they be able to maintain these life-saving jumps, with rising sea temperatures? A new study, to be presented at ...

Tiny reef speedster challenges tuna in the ocean sprint

Jan 15, 2013

(Phys.org)—Tiny coral reef wrasses can swim as fast as some of the swiftest fish in the ocean – but using only half as much energy to do so, Australian scientists working on the Great Barrier Reef have found.

Recommended for you

Seals forage at offshore wind farms

14 hours ago

By using sophisticated GPS tracking to monitor seals' every movement, researchers have shown for the first time that some individuals are repeatedly drawn to offshore wind farms and pipelines. Those man-made ...

Study provides insights into birds' migration routes

16 hours ago

By tracking hybrids between songbird species, investigators have found that migration routes are under genetic control and could be preventing interbreeding. The research, which is published in Ecology Le ...

Technology tracks the elusive Nightjar

17 hours ago

(Phys.org) —Bioacoustic recorders could provide us with vital additional information to help us protect rare and endangered birds such as the European nightjar, new research has shown.

User comments : 0