Research team discovers new kind of signalling mechanism in plant cells

June 25, 2013

Plants possess receptors which are similar to the glutamate receptors in the brain of humans and animals. Biochemists at the Ruhr-Universität Bochum (RUB) with colleagues from the University of Würzburg and the Agricultural University of China in Beijing have discovered that these receptors do not, however, recognise the amino acid glutamate, but many other different amino acids. The team reports in the journal Science Signaling.

Glutamate-like receptor in Arabidopsis recognises many amino acids

To exchange information, cells send out signalling molecules that are recognised by receptors of other cells. Fifteen years ago, researchers discovered glutamate-like receptors, in short GLRs, in a plant. A team led by the RUB biochemists Prof. Dr. Michael Hollmann and Dr. Daniel Tapken has now identified the respective signalling molecules for one of the, in total, 20 GLRs from the thale cress (Arabidopsis thaliana). "Surprisingly, the receptor responds not only to one amino acid, but to many different ones – just not to glutamate", says Hollmann. The most effective is methionine, an amino acid that humans have to obtain from food, but which plants can produce themselves. When the research team mutated the plant so that it no longer contained the receptor AtGLR1.4, it hardly responded to methionine.

Plant receptor is an ion channel

In some respects, the receptor AtGLR1.4 behaves in a way similar to the glutamate receptors in the brain. It is a channel, so it opens – activated by a signalling molecule – a and allows various positively charged particles to flow into the cell, thus triggering an electrical signal. "A special feature of this receptor is that not all amino acids that bind to it trigger an . On the contrary! Some suppress the signal by displacing methionine from the receptor", says Daniel Tapken.

Function of methionine receptors in plants unclear

"Why the plant recognises methionine and similar amino acids at all is still absolutely unclear", the Bochum biochemist goes on. "One possibility is that it reacts in this way to nutrient sources in the environment that contain amino acids. However, it is also possible that the plant deliberately produces itself to send signals – similar to the way it happens in the human brain."

Receptors expressed in frog egg cells for analysis

For the analyses, the RUB team isolated the glutamate-like receptor from plant cells and implemented it in a cell that has no similar receptors – an unfertilised frog egg cell. "It is almost impossible to examine the receptor directly in the plant", Hollmann explains. "There are so many processes operating at the same time that it is extremely difficult to filter out the critical signals."

Explore further: Great mystery of a plant defence pathway unravelled

More information: Tapken, D. et al. (2013): A plant homolog of animal glutamate receptors is an ion channel gated by multiple hydrophobic amino acids, Science Signaling. DOI: 10.1126/scisignal.2003762

Related Stories

Great mystery of a plant defence pathway unravelled

June 3, 2013

(Phys.org) —Together with several partners, scientists from Wageningen UR (University & Research centre) have discovered that RLP-receptors located at the outside of plant cells and playing an important role in plant defence, ...

Recommended for you

Research advances on transplant ward pathogen

August 28, 2015

The fungus Cryptococcus causes meningitis, a brain disease that kills about 1 million people each year—mainly those with impaired immune systems due to AIDS, cancer treatment or an organ transplant. It's difficult to treat ...

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.