Making memories: Practical quantum computing moves closer to reality

Jun 19, 2013

Researchers at the University of Sydney and Dartmouth College have developed a new way to design quantum memory, bringing quantum computers a step closer to reality. The results will appear June 19 in the journal Nature Communications.

may revolutionize information processing, by providing a means to solve problems too complex for traditional computers, with applications in code breaking, materials science and physics. But figuring out how to engineer such a machine, including vital subsystems like , remains elusive.

In the worldwide drive to build a useful quantum computer, the simple-sounding task of effectively preserving quantum information in a quantum memory is a major challenge. The same physics that makes quantum computers potentially powerful also makes them likely to experience errors, even when quantum information is just being stored idly in memory. Keeping quantum information "alive" for long periods, while remaining accessible to the computer, is a key problem.

The Sydney-Dartmouth team's results demonstrate a path to what is considered a holy grail in the research community: storing quantum states with for exceptionally long times, even hours according to their calculations. Today, most quantum states survive for tiny fractions of a second.

"Our new approach allows us to simultaneously achieve very low error rates and very long storage times," said co-senior author Dr. Michael J. Biercuk, director of the Quantum Control Laboratory in the University of Sydney's School of Physics and ARC Centre for Engineered . "But our work also addresses a vital practical issue – providing small access latencies, enabling on-demand retrieval with only a short time lag to extract stored information."

The team's new method is based on techniques to build in error resilience at the level of the quantum memory hardware, said Dartmouth Physics Professor Lorenza Viola, a co-senior author who is leading the quantum control theory effort and the Initiative at Dartmouth.

"We've now developed the quantum 'firmware' appropriate to control a practically useful quantum memory," added Biercuk. "But vitally, we've shown that with our approach a user may guarantee that error never grows beyond a certain level even after very long times, so long as certain constraints are met. The conditions we establish for the memory to function as advertised then inform system engineers how they can construct an efficient and effective quantum memory. Our method even incorporates a wide variety of realistic experimental imperfections."

Explore further: Quantum physics just got less complicated

Related Stories

Playing quantum tricks with measurements

Feb 15, 2013

A team of physicists at the University of Innsbruck, Austria, performed an experiment that seems to contradict the foundations of quantum theory—at first glance. The team led by Rainer Blatt reversed a ...

Data highway for quantum information

Jun 12, 2013

Researchers at the Vienna University of Technology quantum mechanically couple atoms to glass fiber cables. Now, they have shown that their technique enables storage of quantum information over a sufficiently ...

Recommended for you

Quantum physics just got less complicated

10 hours ago

Here's a nice surprise: quantum physics is less complicated than we thought. An international team of researchers has proved that two peculiar features of the quantum world previously considered distinct ...

Controlling light on a chip at the single-photon level

Dec 16, 2014

Integrating optics and electronics into systems such as fiber-optic data links has revolutionized how we transmit information. A second revolution awaits as researchers seek to develop chips in which individual ...

Fraud-proof credit cards possible with quantum physics

Dec 15, 2014

Credit card fraud and identify theft are serious problems for consumers and industries. Though corporations and individuals work to improve safeguards, it has become increasingly difficult to protect financial ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

vacuum-mechanics
1 / 5 (5) Jun 19, 2013
Quantum computing may revolutionize information processing, by providing a means to solve problems too complex for traditional computers, with applications in code breaking, materials science and physics. But figuring out how to engineer such a machine, including vital subsystems like quantum memory, remains elusive.

Maybe understanding the mechanism of quantum mechanics (as below) could give a hint whether quantum computer is closing to reality or not!
http://www.vacuum...19〈=en
Tektrix
not rated yet Jun 19, 2013
"Maybe understanding . . ."

Can VM help me understand why some people thrive on rejection?
Ophelia
not rated yet Jun 24, 2013
This article sucks. It is full of conclusory sentences without a single bit of explanation. For example, here is the article rewritten using their own words in order:
Researchers ... have developed a new way to design quantum memory ... "Our new approach allows us to simultaneously achieve very low error rates and very long storage times," ... The team's new method is based on techniques to build in error resilience at the level of the quantum memory hardware ... "We've now developed the quantum 'firmware' appropriate to control a practically useful quantum memory,"
Anyone care to tell me exactly what they did? Or why you are all giving it a 5 for a bunch of vacuous sentences?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.