Hunger affects decision making and perception of risk

Jun 25, 2013
This projection neuron forwards carbon dioxide information to the region in the fly's brain where the animals can gauge internal and external signals. Credit: MPI of Neurobiology / Purayil & Kadow

Hungry people are often difficult to deal with. A good meal can affect more than our mood, it can also influence our willingness to take risks. This phenomenon is also apparent across a very diverse range of species in the animal kingdom. Experiments conducted on the fruit fly, Drosophila, by scientists at the Max Planck Institute of Neurobiology in Martinsried have shown that hunger not only modifies behaviour, but also changes pathways in the brain.

is radically affected by the availability and amount of food. Studies prove that the willingness of many animals to take risks increases or declines depending on whether the animal is hungry or full. For example, a predator only hunts more dangerous prey when it is close to . This behaviour has also been documented in humans in recent years: one study showed that hungry subjects took significantly more financial risks than their sated colleagues.

Also the fruit fly, Drosophila, changes its behaviour depending on its nutritional state. The animals usually perceive even low quantities of carbon dioxide to be a sign of danger and opt to take flight. However, rotting fruit and plants – the flies' main sources of food – also release carbon dioxide. Neurobiologists in Martinsried have now discovered how the brain deals with this constant conflict in deciding between a hazardous substance and a potential taking advantage of the fly as a great genetic for circuit .

In various experiments, the scientists presented the flies with environments containing carbon dioxide or a mix of carbon dioxide and the smell of food. It emerged that hungry flies overcame their aversion to carbon dioxide significantly faster than fed flies – if there was a smell of food in the environment at the same time. Facing the prospect of food, hungry animals are therefore significantly more willing to take risks than sated flies. But how does the brain manage to decide between these options?

Avoiding carbon dioxide is an innate behaviour and should therefore be generated outside the mushroom body in the fly's brain: previously, the nerve cells in the mushroom body were linked only with learning and behaviour patterns that are based on learned associations. However, when the scientists temporarily disabled these nerve cells, hungry flies no longer showed any reaction whatsoever to carbon dioxide. The behaviour of fed flies, on the other hand, remained the same: they avoided the carbon dioxide.

In further studies, the researchers identified a projection neuron which transports the carbon dioxide information to the mushroom body. This nerve cell is crucial in triggering a flight response in hungry, but not in fed animals. "In fed flies, nerve cells outside the mushroom body are enough for flies to flee from the carbon dioxide. In hungry animals, however, the nerve cells are in the mushroom body and the projection neuron, which carries the carbon dioxide information there, is essential for the flight response. If mushroom body or projection neuron activity is blocked, only hungry flies are no longer concerned about the carbon dioxide," explains Ilona Grunwald-Kadow, who headed the study.

The results show that the innate flight response to carbon dioxide in is controlled by two parallel neural circuits, depending on how satiated the animals are. "If the fly is hungry, it will no longer rely on the 'direct line' but will use brain centres to gauge internal and external signals and reach a balanced decision," explains Grunwald-Kadow. "It is fascinating to see the extent to which metabolic processes and hunger affect the processing systems in the brain," she adds.

Explore further: Scientists identify neurons that control feeding behavior in Drosophila

More information: Lasse B. Bräcker, K.P. Siju, Nelia Varela, Yoshinori Aso, Mo Zhang, Irina Hein, Maria Luisa Vasconcelos, Ilona C. Grunwald Kadow, Essential role of the mushroom body in context dependent CO2 avoidance in Drosophila, Current Biology, 13 June 2013

Related Stories

Flies with personality

Apr 08, 2013

(Phys.org) —Fruit flies may have more individuality and personality than we imagine.

Fruit fly's 'sweet tooth' short-lived, research finds

Oct 16, 2012

While flies initially prefer food with a sweet flavor, they quickly learn to opt for less sweet food sources that offer more calories and nutritional value, according to new research by University of British ...

Recommended for you

Male monkey filmed caring for dying mate (w/ Video)

Apr 18, 2014

(Phys.org) —The incident was captured by Dr Bruna Bezerra and colleagues in the Atlantic Forest in the Northeast of Brazil.  Dr Bezerra is a Research Associate at the University of Bristol and a Professor ...

Orchid named after UC Riverside researcher

Apr 17, 2014

One day about eight years ago, Katia Silvera, a postdoctoral scholar at the University of California, Riverside, and her father were on a field trip in a mountainous area in central Panama when they stumbled ...

In sex-reversed cave insects, females have the penises

Apr 17, 2014

Researchers reporting in the Cell Press journal Current Biology on April 17 have discovered little-known cave insects with rather novel sex lives. The Brazilian insects, which represent four distinct but re ...

Fear of the cuckoo mafia

Apr 17, 2014

If a restaurant owner fails to pay the protection money demanded of him, he can expect his premises to be trashed. Warnings like these are seldom required, however, as fear of the consequences is enough to ...

User comments : 0

More news stories

Biologists help solve fungi mysteries

(Phys.org) —A new genetic analysis revealing the previously unknown biodiversity and distribution of thousands of fungi in North America might also reveal a previously underappreciated contributor to climate ...

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.