Organic electronics: Imaging defects in solar cells

June 27, 2013
Organic electronics: Imaging defects in solar cells
Experimental setup used to map defect densities in organic thin films. A pulsed laser beam is used to raster-scan the material of interest, which is assembled in a field-effect geometry, allowing changes in current flow to be detected. The yellow zones indicate sites at which the defect density is particularly high. Source: Christian Westermeier

(Phys.org) —Researchers at Ludwig-Maximilians-Universitaet in Munich have developed a new method for visualizing material defects in thin-film solar cells.

An LMU research team led by Bert Nickel has, for the first time, succeeded in functionally characterizing the active layer in organic thin-film solar cells using for localized of the material. The findings are reported in the scientific journal "Advanced Materials". "We have developed a method in which the material is raster-scanned with a laser, while the focused beam is modulated in different ways, by means of a rotating attenuator for instance. This enables us to map directly the of defects in , a feat which has not previously been achieved," explains Christian Westermeier, who is first author of the new study.

Solar cells can convert sunlight into electrical power by exploiting light's capacity to excite molecules, producing and positively charged "holes". How long it takes for these charge carriers to be extracted by the electrodes is in turn dependent on the detailed structure of the cell's active layer. Defects in the regular arrangement of the atoms act as temporary traps for charge carriers, and thus reduce the size of the usable current that can be produced. The new mapping method allows researchers to detect the changes in current flow associated with localized excitation of defects by laser light. In the utilized experimental geometry a metallic back contact serves as the gating electrode. By applying a voltage to this gate, the traps present in the can be filled or emptied in a controllable manner via the so-called field effect. By modulating the frequency of the laser light the temporal dynamics of trap states can be determined.

The study revealed that in pentacene, an organic semiconductor, the defects tend to be concentrated at certain positions. "It would be interesting to know what is special about the surface layer at these hot spots. What produces defects at these sites? They could be due to chemical contaminants or to irregularities in the alignment of the molecules," says Bert Nickel, who is also a member of the Nanosystems Initiative Munich (NIM), a Cluster of Excellence.

Nickel and his colleagues chose the pentacene for their experiments because it is the most conductive material presently available for the manufacture of organic semiconductors. In the present study, they looked at a thin pentacene layer in which the majority of are positively charged holes. In subsequent work, they plan to investigate complete solar cells, which consist of a hole-conducting film in direct contact with an electron-conducting layer.

Explore further: Dye-sensitized solar cells with carbon nanotube transparent electrodes offer significant cost savings

More information: onlinelibrary.wiley.com/doi/10.1002/adma.201300958/abstract

Related Stories

Future looks bright for carbon nanotube solar cells

June 18, 2013

(Phys.org) —In an approach that could challenge silicon as the predominant photovoltaic cell material, University of Wisconsin-Madison materials engineers have developed an inexpensive solar cell that exploits carbon nanotubes ...

Watching solar cells grow

June 27, 2013

(Phys.org) —For the first time, a team of researchers at the HZB led by Dr. Roland Mainz and Dr. Christian Kaufmann has managed to observe growth of high-efficiency chalcopyrite thin film solar cells in real time and to ...

Recommended for you

For 2-D boron, it's all about that base

September 2, 2015

Rice University scientists have theoretically determined that the properties of atom-thick sheets of boron depend on where those atoms land.

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Scientists grow high-quality graphene from tea tree extract

August 21, 2015

(Phys.org)—Graphene has been grown from materials as diverse as plastic, cockroaches, Girl Scout cookies, and dog feces, and can theoretically be grown from any carbon source. However, scientists are still looking for a ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.