A quantum simulator for magnetic materials

May 23, 2013
Illustration of ultracold fermionic atoms in an optical lattice potential. Along the strong bonds of the lattice, antiferromagnetic (or anti-aligning) correlations form, detection of which has only now been achieved, allowing for a better understanding of the signature of quantum magnetism. Credit: Thomas Uehlinger, ETH Zürich

Physicists understand perfectly well why a fridge magnet sticks to certain metallic surfaces. But there are more exotic forms of magnetism whose properties remain unclear, despite decades of intense research. An important step towards filling these gaps comes now from Tilman Esslinger and his group at the Department of Physics.

The team has developed a new kind of device that uses and atoms to emulate . Their approach promises fundamental insights beyond what can be obtained with current theoretical and . Moreover, the work might guide researchers towards finding new materials with interesting properties for future technologies and applications.

The concert of tiny magnets

Magnetic materials owe their properties to the intricate interplay between a myriad of . These elemental magnets come typically in the form of individual electrons, each of which is weakly magnetic. Observable magnetism arises when these magnetic building blocks are arranged in specific patterns, in which they are held by quantum-mechanical interactions. A typical fridge magnet, for example, is composed of several ferromagnetic sections; in each segment all elemental magnets are aligned in parallel, giving rise to the known .

In other magnetic materials the situation is much more subtle, and the elemental magnets are arranged into more complicated patterns. Examples include so-called quantum spin liquids, where the elemental magnets interact in a way that prevents them from ever reaching an ordered state such as that found in a ferromagnet. Physicists and material scientists are interested in such unusual magnets as they are landmark problems in many-body , but also because these materials possess properties that may be the basis of robust and compact devices or of novel forms of .

Simulating quantum systems with quantum systems

Unlike in the case of fridge magnets, predicting the behaviours of quantum spin liquids and other exotic magnetic states is a notoriously hard problem. The mutual interactions between hundreds of elemental magnets have to be taken into account, and this poses a significant challenge in calculations. The complexity of these calculations explains why for many magnetic materials – and even for idealised model systems – a full understanding is still lacking, impeding progress in utilising and further developing these materials.

As conventional methods involving paper and pencil or computers often fail for these complicated systems, Esslinger and his co-workers pursue a very different approach to understanding magnetic materials. They create artificial materials that replicate the material of interest. That is, instead of studying the actual material, the scientists perform measurements on its artificial counterpart, which is easier to handle and where important parameters (the strength of interaction between the elemental magnets, for example) can be changed more easily.

The physicists build their artificial materials by making atoms to act like electrons and loading them into a "crystal" created by interfering laser beams. Both the laser beams and the trapped atoms can be controlled with exquisite accuracy. "In this way we can simulate the quantum-mechanical behaviour of different magnetic materials," explains Esslinger, and adds: "One of our next goals is to address unsolved questions in the context of spin liquids."

From model to technology

Exploring the properties of a quantum system with another one that can be better controlled is known as 'quantum simulation'. In the past few years, there has been intense research into developing a quantum simulator for magnetic materials—this specific application is considered to be one of the main goals in the field. Esslinger and his team have now for the first time managed to construct such a device that directly reproduces the behaviour of a large number of electrons in a magnetic material. "The key to our success has been a method that allows us to reach the extremely low temperatures required to explore quantum magnetism," explains Daniel Greif, a PhD student in the group of Esslinger and first author of the study. With their method, the physicists were able to create a magnetic system containing 5,000 atoms. Teaming up with the group of Matthias Troyer, a professor at the Institute for Theoretical Physics, they are currently investigating whether the behaviour of this state can be reproduced on a conventional computer.

The flexibility of the quantum-simulation approach opens up an avenue to studying a wide range of possible scenarios of how electrons interact with each other. The results of these simulations can then be compared with the behaviour of natural magnetic materials, in order to gain insight into the mechanisms that defines their properties. But there is also the prospect of discovering magnetic behaviours that has not been seen yet in natural materials. This, in turn, could spur novel applications, says Esslinger: "Future technologies are often driven by the development of new materials like high-temperature superconductors, graphene or new magnetic materials."

Explore further: Longer distance quantum teleportation achieved

More information: Greif D, Uehlinger T, Jotzu G, Tarruell L, Esslinger T: Short-range quantum magnetism of ultracold fermions in an optical lattice. Science, 2013, Advance online publication, doi: 10.1126/science.1236362

Related Stories

Researchers forward quest for quantum computing

May 23, 2013

Research teams from UW-Milwaukee and the University of York investigating the properties of ultra-thin films of new materials are helping bring quantum computing one step closer to reality.

Quantum bar magnets in a transparent salt

Jun 15, 2012

Scientists have managed to switch on and off the magnetism of a new material using quantum mechanics, making the material a test bed for future quantum devices.

16 atomic ions simulate a quantum antiferromagnet

May 03, 2013

(Phys.org) —Frustration crops up throughout nature when conflicting constraints on a physical system compete with one another. The way nature resolves these conflicts often leads to exotic phases of matter ...

Recommended for you

Quantum mechanics to charge your laptop?

Sep 18, 2014

Top scientists from UC Berkeley and MIT found the expertise they lacked at FIU. They invited Sakhrat Khizroev, a professor with appointments in both medicine and engineering, to help them conduct research ...

Physicists design zero-friction quantum engine

Sep 16, 2014

(Phys.org) —In real physical processes, some energy is always lost any time work is produced. The lost energy almost always occurs due to friction, especially in processes that involve mechanical motion. ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

vacuum-mechanics
1 / 5 (2) May 23, 2013
The concert of tiny magnets
Magnetic materials owe their properties to the intricate interplay between a myriad of tiny magnets. These elemental magnets come typically in the form of individual electrons, each of which is weakly magnetic. Observable magnetism arises when these magnetic building blocks are arranged in specific patterns, in which they are held by quantum-mechanical interactions. A typical fridge magnet, for example, is composed of several ferromagnetic sections; in each segment all elemental magnets are aligned in parallel, giving rise to the known magnetic behaviour.

Unfortunately we do not know how and why a rotating electron could create magnetic field, understand its working mechanism (as below) could help the research.
http://www.vacuum...21〈=en