Related topics: atoms

Team's bigger and better 'tweezer clock' is super stable

JILA physicists have boosted the signal power of their atomic "tweezer clock" and measured its performance in part for the first time, demonstrating high stability close to the best of the latest generation of atomic clocks.

Trapping nanoparticles with optical tweezers

By exploiting a particular property of light diffraction at the interface between a glass and a liquid, researchers have demonstrated the first optical tweezers capable of trapping nanoscale particles.

Optimising laser-driven electron acceleration

The interaction between lasers and matter is at the forefront of new investigations into fundamental physics as well as forming a potential bedrock for new technological innovations. One of the initiatives spearheading this ...

Nonlinear beam cleaning in spatiotemporally mode-locked lasers

In the last few decades, only temporal modes have been considered for mode-locked fiber lasers using single-mode fibers. Mode-locked single-mode fiber lasers offer advantages due to their high-gain doping, intrinsically single-spatial ...

Sensors get a laser shape up

A simple method developed at KAUST uses laser beams to create graphene electrodes that have better performance than those produced through older methods.

page 1 from 40