Metallic glass: How nanoscale islands react under strain

May 8, 2013
Metallic glass: How nanoscale islands react under strain
Snapshots of atomic movements captured during simulations of FeP (top), MgAl (middle) and CuZr (bottom) metallic glasses undergoing increasing mechanical strain (left to right). Credit: 2012 American Institute of Physics

Quick-cooling molten atoms give metal alloys a glassy, or random, atomic structure that generates higher elasticity and better wear- and corrosion-resistance than their crystalline alloy counterparts. However, these 'metallic glasses' also suffer from brittleness that makes them shatter. Findings from Yong Wei Zhang of the A*STAR Institute of High Performance Computing in Singapore and co-workers may now make it easier to use metallic glass in practical engineering applications. They have discovered that a fundamental relationship between material plasticity and atomic 'islands', known as 'shear transition zones' (STZs), enables precise measurement and prediction of fracturing in these materials.

When an external force strains a metallic glass, most of its atoms respond elastically and try to return to their original positions. Researchers believe that shattering occurs when STZs appear and begin to deform irreversibly. If present in high enough numbers, the STZs will generate shear bands that propagate through a cascade-like process and make the glass fracture.

Despite their importance, defining the extent of STZs remains a point of controversy among researchers. Zhang and co-workers used atomic calculations to explore the development of STZs within three metallic glasses—iron–phosphorous (FeP), magnesium–aluminum (MgAl) and copper–zirconium (CuZr). They selected these materials because of their increasingly different 'Poisson's ratios', a mechanical constant that describes how a material 'pinches in', like a rubber band, when pulled lengthwise. Zhang and co-workers suspected that this ratio could be related to STZ formation.

They first simulated in each of the three types of (see image) and observed whether the atomic movements were plastic or irreversible. Then, they correlated the plastic movements with a based on interatomic distances. Intriguingly, they discovered that they could extract a constant 'characteristic length' parameter to measure the size of STZ islands that developed during deformation.

Zhang explains that the nanoscale lengths of STZs are reminiscent of 'defects' seen in crystalline metals, and their positive correlation with the Poisson's ratio of a material can help predict fracture problems. Their calculations showed that bigger STZ islands had more resistance to pinching in, and shattered only when relatively large shear bands formed.

By connecting basic materials physics to atomic deformation zones, the team hopes to lay the groundwork for a new generation of metallic glasses with greater resistance to brittle fracture. "Understanding the connection between Poisson's ratio, STZ size and fracture toughness is very important for the development of metallic glasses with good mechanical properties," says Zhang.

Explore further: Glass you can build with: Metallic glass that's stronger and lasts longer

More information: Murali, P., Zhang, Y. and Gao, H. On the characteristic length scales associated with plastic deformation in metallic glasses. Applied Physics Letters 100, 201901 (2012).

Related Stories

New glass tops steel in strength and toughness

January 10, 2011

( -- Glass stronger and tougher than steel? A new type of damage-tolerant metallic glass, demonstrating a strength and toughness beyond that of any known material, has been developed and tested by a collaboration ...

Recommended for you

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Iron-gallium alloy shows promise as a power-generation device

September 29, 2015

An alloy first made nearly two decades ago by the U. S. Navy could provide an efficient new way to produce electricity. The material, dubbed Galfenol, consists of iron doped with the metal gallium. In new experiments, researchers ...

Extending a battery's lifetime with heat

October 1, 2015

Don't go sticking your electronic devices in a toaster oven just yet, but for a longer-lasting battery, you might someday heat them up when not in use. Over time, the electrodes inside a rechargeable battery cell can grow ...

Invisibility cloak might enhance efficiency of solar cells

September 30, 2015

Success of the energy turnaround will depend decisively on the extended use of renewable energy sources. However, their efficiency partly is much smaller than that of conventional energy sources. The efficiency of commercially ...

Scientists produce status check on quantum teleportation

September 30, 2015

Mention the word 'teleportation' and for many people it conjures up "Beam me up, Scottie" images of Captain James T Kirk. But in the last two decades quantum teleportation – transferring the quantum structure of an object ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.