Feeling the strain: Shear effects in magnetoelectric switching

The high resolution and wealth of data provided by an experiment at Diamond can lead to unexpected discoveries. The piezoelectric properties of the ceramic perovskite PMN-PT (0.68Pb(Mg1/3Nb2/3)O3–0.32PbTiO3) are widely ...

Turning the switch on biofuels

Plant cell walls contain a renewable, nearly limitless supply of sugar that can be used in the production of chemicals and biofuels. However, retrieving these sugars isn't all that easy.

Scientists discover how mechanical strain shapes plants

Scientists from Nanyang Technological University, Singapore (NTU Singapore) and Carnegie Mellon University in the U.S. have discovered how mechanical forces can influence the shapes of plant leaves and flower petals.

Team uncovers the underlying mechanisms of 3-D tissue formation

If you want to build an organ for transplant, you need to think in 3-D. Using stem cells, scientists are now able to grow parts of organs in the lab, but that is a far cry from constructing a fully-formed, functioning, three-dimensional ...

Stretchy solar cells a step closer

Organic solar cells that can be painted or printed on surfaces are increasingly efficient, and now show promise for incorporation into applications like clothing that also require them to be flexible.

Piezomagnetic material changes magnetic properties when stretched

Piezoelectric materials, which generate an electric current when compressed or stretched, are familiar and widely used: think of lighters that spark when you press a switch, but also microphones, sensors, motors and all kinds ...

How bacteria maintain and recover their shape

Bacteria come in all shapes and sizes—some are straight as a rod, others twist like a corkscrew. Shape plays an important role in how bacteria infiltrate and attack cells in the body. The helical shape of Helicobacter pylori, ...

page 1 from 4