Chemists demonstrate nanoscale alloys so bright they could have potential medical applications

May 14, 2013
Jill Millstone, University of Pittsburgh, assistant professor of chemistry, demonstrates that nanometer-scale alloys possess the ability to emit light so bright they could have potential applications in medicine. Credit: University of Pittsburgh

(Phys.org) —Alloys like bronze and steel have been transformational for centuries, yielding top-of-the-line machines necessary for industry. As scientists move toward nanotechnology, however, the focus has shifted toward creating alloys at the nanometer scale—producing materials with properties unlike their predecessors.

Now, research at the University of Pittsburgh demonstrates that possess the ability to emit light so bright they could have potential applications in medicine. The findings have been published in the Journal of the American Chemical Society.

"We demonstrate alloys that are some of the brightest, near-infrared-light-emitting species known to date. They are 100 times brighter than what's being used now," said Jill Millstone, principal investigator of the study and assistant professor of chemistry in Pitt's Kenneth P. Dietrich School of Arts and Sciences. "Think about a particle that will not only help researchers detect cancer sooner but be used to treat the tumor, too."

In the paper, Millstone presents alloys with drastically different properties than before—including near-infrared (NIR) —depending on their size, shape, and . NIR is an important region of the and is integral to technology found in science and , said Millstone. She uses a as an example.

"If you put your finger over a red laser [which is close to the NIR light region of the spectrum], you'll see the red light shine through. However, if you do the same with a [light in the visible region of the spectrum], your finger will completely block it," said Millstone. "This example shows how the body can absorb visible light well but doesn't absorb red light as well. That means that using NIR emitters to visualize cells and, ultimately parts of the body, is promising for minimally invasive diagnostics."

In addition, Millstone's demonstration is unique in that she was able to show—for the first time—a continuously tunable composition for nanoparticle alloys; this means the ratio of materials can be altered based on need. In traditional metallurgical studies, materials such as steels can be highly tailored toward the application, say, for an airplane wing versus a cooking pot. However, alloys at the nanoscale follow different rules, says Millstone. Because the nanoparticles are so small, the components often don't stay together and instead quickly separate, like oil and vinegar. In her paper, Millstone describes using small organic molecules to "glue" an alloy in place, so that the two components stay mixed. This strategy led to the discovery of NIR luminescence and also paves the way for other types of nanoparticle alloys that are useful not only in imaging, but in applications like catalysis for the industrial-scale conversion of fossil fuels into fine chemicals.

Millstone says that taken together these observations provide a new platform to investigate the structural origins of small metal nanoparticles' photoluminescence and of alloy formation in general. She believes these studies should lead directly to applications in such areas of national need as health and energy.

Explore further: Blades of grass inspire advance in organic solar cells

More information: The paper, "Photoluminescent Gold-Copper Nanoparticle Alloys with Composition-Tunable Near-Infrared Emission," first appeared online April 3 and later in print April 10 in JACS (Journal of the American Chemical Society).

Related Stories

Manipulating Lorentz and Fano spectral line shapes

May 13, 2013

(Phys.org) —It is widely known that the optical properties of certain materials can be modified by using lasers to control the quantum states of their optical electrons. Lasers that can generate ultra-short ...

Nanoparticles glow through thick layer of tissue

Sep 28, 2012

(Phys.org)—An international research team has created unique photoluminescent nanoparticles that shine clearly through more than 3 centimeters of biological tissue—a depth that makes them a promising ...

Recommended for you

Blades of grass inspire advance in organic solar cells

12 hours ago

Using a bio-mimicking analog of one of nature's most efficient light-harvesting structures, blades of grass, an international research team led by Alejandro Briseno of the University of Massachusetts Amherst ...

How to make a "perfect" solar absorber

Sep 29, 2014

The key to creating a material that would be ideal for converting solar energy to heat is tuning the material's spectrum of absorption just right: It should absorb virtually all wavelengths of light that ...

User comments : 0