Innovative self-cooling, thermoelectric system developed

Apr 11, 2013

Spanish researchers at the UPNA/NUP-Public University of Navarre have produced a prototype of a self-cooling thermoelectric device that achieves "free" cooling of over 30ºC in devices that give off heat. It is a piece of equipment that acts as a traditional cooler but which consumes no electricity because it obtains the energy it needs to function from the very heat that has to be dissipated.

The researchers want to apply this system to power converters and transformers present in power stations that produce renewable electrical power employing, for example, wind, solar photovoltaic, solar thermoelectric and hydraulic energy.David Astrain-Ulibarrena, of the UPNA/NUP's Department of Engineering, Mechanics, Energy and Materials and head researcher in the project, explains what the system consists of: "When these devices are functioning, they heat up and need to be cooled down.In many cases, heat exchangers with fans are used which naturally need to be powered externally and consume a certain amount of electrical power. What we do is take advantage of the emitted by the and transformer to produce the electrical power needed to make the fans work. That way we achieve the cooling of the device and control its temperature, but without any ."

Taking advantage of residual energy

This self-cooling thermoelectric application is one of the lines of action of the GETER (Thermoelectric generation with residual ) project, whose overall aim is to develop that allow the heat energy of a low thermal level to be converted into electrical energy; in other words, residual heat flows of temperatures of less than 250ºC. "The best future perspectives regarding thermoelectric generation have to do with making use of free heat sources, like residual heat flows, " says ProfAstrain. These are very frequent heat sources (in Spain, 40% of primary energy is wasted in the form of residual heat) which are difficult to make use of with the conventional systems for producing electrical power, like steam and gas turbines."

Thermoelectric generation has been widely used for mid and high temperatures (from 250ºC to 1,200º C) in military and aerospace uses. The thermoelectric generator that powers the rover Curiosity on Mars is a prime example because of its topicality. The GETER project of the Public University of Navarre aims to adapt this technology to low temperatures and to optimize its application for civilian purposes.

Within the framework of this project, the research team has developed and experimentally validated a computational model that has shown that it can obtain up to 1 kW of for every cubic metre of an industrial flue.

Explore further: Researchers design a new system to make overtaking safer on highways

Related Stories

Self-cooling observed in graphene electronics

Apr 03, 2011

With the first observation of thermoelectric effects at graphene contacts, University of Illinois researchers found that graphene transistors have a nanoscale cooling effect that reduces their temperature.

Recommended for you

Drone postal deliveries begin in Switzerland

10 hours ago

Wondering where your package is? Look up! Switzerland's postal service said Tuesday it had begun testing parcel deliveries by unmanned drones, although widespread use of the flying postmen is not likely to kick in for another ...

Omnidirectional free space wireless charging developed

10 hours ago

Mobile devices, such as smartphones and laptops, have become indispensable portable items in modern life, but one big challenge remains to fully enjoying these devices: keeping their batteries charged.

Europe's deepest glider to be developed

Jul 06, 2015

19 partners from across Europe have come together to develop Europe's first ultra-deep-sea robot glider. This glider will be capable of sampling the ocean autonomously at depths of 5000m, and maybe more in ...

Researchers help reconstructing the Michelangelo bronzes

Jul 06, 2015

Engineers and imagers from the University of Warwick's Warwick Manufacturing Group (WMG) and anatomists from Warwick Medical School at the University of Warwick are helping Art historians from the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.