NASA sends unmanned aircraft to study volcanic plume

Apr 02, 2013
NASA researchers modified three repurposed Aerovironment RQ-14 Dragon Eye unmanned aerial vehicles acquired from the United States Marine Corps to study the sulfur dioxide plume of Costa Rica's Turrialba volcano. The project is designed to improve the remote sensing capability of satellites and computer models of volcanic activity. Credit: Google/NASA/Matthew Fladeland

(Phys.org) —Studying volcanos can be hazardous work, both for researchers and aircraft. To penetrate such dangerous airspace, unmanned aerial vehicles (UAVs), especially those with electric engines that ingest little contaminated air, are an emerging and effective way to gather crucial data about volcanic ash and gases.

Last month, a team of NASA researchers deployed three repurposed military UAVs with special instruments into and above the noxious plume of Costa Rica's active Turrialba volcano, near San Jose. The project was designed to improve the remote-sensing capability of satellites, including satellite data research products such as maps of the concentration and distribution of . It was also designed to improve computer models of how and where volcanic plumes will travel.

Led by principal investigator David Pieri of NASA's Jet Propulsion Laboratory, Pasadena, Calif., the team launched 10 flights of the remote controlled UAVs into the and above the rim of Turrialba's 10,500-foot (3,200-meter) summit crater between March 11 and 14.

The small, twin electric engine Dragon Eye UAVs were acquired by researchers at NASA's Ames Research Center, Moffett Field, Calif., from the United States Marine Corps. Weighing less than six pounds (2.2 kilograms) each and with a wingspan of 3.75 feet (1.1 meters), they have visible and infrared video cameras and can carry a one-pound for up to an hour within a volcanic plume. The researchers equipped them with sulfur dioxide and particle sensors and automatic atmospheric sampling bottles keyed to measure sulfur dioxide concentration.

The study launched 10 flights between March 11-14, 2013, into the volcanic plume and along the rim of the Turrialba summit crater approx. 10,500 feet above sea level. Credit: NASA/ Matthew Fladeland

During the flights, the team coordinated its data gathering with NASA's Advanced Spaceborne Thermal Emission and (ASTER) instrument on NASA's , allowing scientists to compare sulfur dioxide concentration measurements from the satellite with measurements taken from within the plume.

Scientists believe computer models derived from this study will contribute to safeguarding the National and International Airspace System, and will also improve global climate predictions and mitigate environmental hazards (e.g., sulfur dioxide volcanic smog, or "vog") for people who live near volcanoes.

A key constituent of such models is the intensity and character of the volcanic activity located near the eruption vent. For instance, knowing the height of ash and gas concentrations, and temperatures over the vent during an eruption are important initial factors for any model that predicts the direction of the volcanic plume.

"It is very difficult to gather data from within volcanic eruption columns and plumes because updraft wind speeds are very high and high ash concentrations can quickly destroy aircraft engines," said Pieri. "Such flight environments can be very dangerous to manned aircraft. Volcanic eruption plumes may stretch for miles from a summit vent, and detached ash clouds can drift hundreds to thousands of miles from an eruption site."

The project supports NASA's ASTER mission as well as JPL's planned Hyperspectral Infrared Imager (HyspIRI) satellite mission by improving satellite data-based retrievals of gases and solid aerosols associated with volcanic activity, as well as volcanic emission transport models. HyspIRI will study the world's ecosystems and provide critical information on natural disasters such as volcanoes, assessing their pre-eruptive behavior and the likelihood of future eruptions.

Explore further: NASA sees Typhoon Matmo making second landfall in China

More information: For more information, read the full Ames feature at: www.nasa.gov/topics/earth/eart… anic-plume-uavs.html . For more on NASA's Airborne Science Program, visit: airbornescience.nasa.gov/ . For more on HyspIRI, visit: hyspiri.jpl.nasa.gov/ . For more on ASTER, visit: asterweb.jpl.nasa.gov/ .

Related Stories

Satellites monitor Icelandic ash plume

May 24, 2011

(PhysOrg.com) -- As Iceland's Grímsvötn volcano spews ash high into the atmosphere, satellite observations are providing essential information to advisory centres assessing the possible hazards to ...

Satellite looks down the eye of erupting Nabro Volcano

Jun 28, 2011

Wow! What an amazing and detailed top-down view of an active volcano! This is the Nabro Volcano, which has been erupting since June 12, 2011. It sits in an isolated region on the border between Eritrea and ...

Earth from space: A gush of volcanic gas

Jun 10, 2011

This image shows the huge plume of sulphur dioxide that spewed from Chile's Puyehue-Cordón Caulle Volcanic Complex, which lies in the Andes about 600 km south of Santiago.

Recommended for you

Fires in the Northern Territories July 2014

12 hours ago

Environment Canada has issued a high health risk warning for Yellowknife and surrounding area because of heavy smoke in the region due to forest fires. In the image taken by the Aqua satellite, the smoke ...

How much magma is hiding beneath our feet?

13 hours ago

Molten rock (or magma) has a strong influence on our planet and its inhabitants, causing destructive volcanic eruptions and generating some of the giant mineral deposits. Our understanding of these phenomena ...

Oso disaster had its roots in earlier landslides

16 hours ago

The disastrous March 22 landslide that killed 43 people in the rural Washington state community of Oso involved the "remobilization" of a 2006 landslide on the same hillside, a new federally sponsored geological study concludes.

User comments : 0