New methodology for the analysis of proteins

Apr 05, 2013
New methodology for the analysis of proteins
The enrichment of urea (in purple) around the protein favours its unfolding. Credit: M Candotti, IRB Barcelona

A study led by the professor of Biochemistry and Molecular Biology from the Faculty of Chemistry of the UB Modesto Orozco, and by Xavier Salvatella, from the Department of Biochemistry, both ICREA scientists at the Institute for Research in Biomedicine (IRB Barcelona), has devised a new strategy to study the shape of proteins.

According to Orozco, "by combining computational modeling and experimental physicochemical techniques, we have revealed the , which, until now, were unachievable because of technical barriers". Results have been published on the journal Proceedings of the National Academy of Sciences (PNAS).

The research, carried out within the joint programme IRB Barcelona - Barcelona Supercomputing Center (BSC) —centres located at the BKC—, represents an advance in research. Michela Candotti, the first author of of the paper, states that "to know the shape that proteins have is essential to perform any analysis. A wire can be a paperclip, a staple or a spring, depending how it is folded". This remark is especially relevant given the multi-functional nature of many proteins.

In the study researchers have been able to describe the chemical mechanisms by which compounds such as urea unfold proteins. "This was a debate that started in the 60s and now, with this work, it can be considered closed", explains Orozco. Furthermore, they have established a new strategy that will allow them to decipher the conformation of the Intrinsically Disordered Proteins (IDP). IDPs are a group of proteins without a rigid structure that comprise a large part of the ; however, little is known about them. "Our results will contribute to research into diseases that involve IDPs, such as cancer, Parkinson's or Alzheimer", affirms Salvatella. Finally, scientists have identified the first steps in protein folding, another aspect which is discussed at great lenght.

Explore further: For cells, internal stress leads to unique shapes

More information: Candotti, M. et al. Towards an atomistic description of the urea-denatured state of proteins. Proceedings of the National Academy of Sciences (PNAS), (early edition) 25th March 2013. DOI: 10.1073/pnas.1216589110

add to favorites email to friend print save as pdf

Related Stories

First description of a triple DNA helix in a vacuum

Apr 18, 2012

A team of researchers at the Institute for Research in Biomedicine (IRB Barcelona) and the Barcelona Supercomputing Center (BSC) have managed for the first time to extract trustworthy structural information ...

First-ever high-resolution observations of DNA unfolding

May 20, 2010

The scientists Modesto Orozco, group leader of the Molecular Modelling and Bioinformatics Group at IRB Barcelona, Full Professor of Biochemistry and Molecular Biology at the University of Barcelona and director ...

Recommended for you

For cells, internal stress leads to unique shapes

14 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

15 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

17 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 0

More news stories

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

Sony's PlayStation 4 sales top seven million

Sony says it has sold seven million PlayStation 4 worldwide since its launch last year and admitted it can't make them fast enough, in a welcome change of fortune for the Japanese consumer electronics giant.