High pressure gold nanocrystal structure revealed

April 9, 2013

A major breakthrough in measuring the structure of nanomaterials under extremely high pressure has been made by researchers at the London Centre for Nanotechnology (LCN).

Described in Nature Communications, the study used new advances in x-ray diffraction to image the changes in of gold nanocrystals under pressures of up to 6.5 gigapascals.

Under high pressures, imaging methods such as electron or are not viable, making x-ray diffraction imaging the only option. However, until recently, focusing an image created with this method has proved difficult.

Using a technique developed by LCN researchers to correct the of the x-ray beams, the scientists, working in collaboration with the Carnegie Institution of Washington, have now been able to measure the structure of gold nanocrystals in higher resolution than ever before.

Professor Ian Robinson, who led the LCN's contribution to the study, said: "Solving the distortion problem of the x-ray diffraction images is analogous to prescribing eye glasses to correct vision.

"Now this problem has been solved, we can access the whole field of nanocrystal structures under pressure. The scientific mystery of why under pressure are up to 50% stronger than may soon be unravelled."

To carry out the research, a 400 nm diameter gold nanocrystal was put into a device called a Diamond-Anvil Cell (DAC) which can recreate the immense pressures which exist deep inside the Earth, creating materials and phases which do not exist under normal conditions.

The sample was crushed within the device and the changes were imaged as the pressure, measured by a small ruby sphere, was increased. The study showed that under low pressure, the nanocrystal acted as expected and the edges became strained, however, surprisingly, the strains disappeared under further compression.

The scientists explain this by suggesting that the pressurised material is undergoing "plastic flow", a phenomenon whereby a material will start to flow and become liquid once it reaches a critical pressure. This hypothesis was further supported when the faceted shape of the crystal developed a smoother and rounder shape as the pressure increased.

Professor Robinson added "This development has great potential for exploring the formation of minerals within the Earth's crust, which transform from one phase to another under pressure"

In the future, this technique offers a very promising approach for in-situ nanotechnology development under high pressures.

Explore further: New imaging technique reveals the atomic structure of nanocrystals

More information: 'Coherent diffraction imaging of nanoscale strain evolution in a single crystal under high pressure' is published online in Nature Communications today. DOI: 10.1038/ncomms2661

Related Stories

Squeezing Information from Materials under Extreme Pressure

May 31, 2010

(PhysOrg.com) -- By compressing tiny amounts of material between two diamond anvils, scientists have for more than three decades been able to achieve pressures of over 1 million atmospheres. The physical changes and phase ...

New form of superhard carbon observed

October 11, 2011

An amorphous diamond – one that lacks the crystalline structure of diamond, but is every bit as hard – has been created by a Stanford-led team of researchers.

High-pressure science gets super-sized

October 24, 2012

(Phys.org)—The study of materials at extreme conditions took a giant leap forward with the discovery of a way to generate super high pressures without using shock waves whose accompanying heat turns solids to liquid.

Recommended for you

An engineered surface unsticks sticky water droplets

August 31, 2015

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets ...

Electrical circuit made of gel can repair itself

August 25, 2015

(Phys.org)—Scientists have fabricated a flexible electrical circuit that, when cut into two pieces, can repair itself and fully restore its original conductivity. The circuit is made of a new gel that possesses a combination ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

rsklyar
1 / 5 (1) Apr 11, 2013
Stole you some idea yet? Nature Materials is the best agent! at https://connect.i...sr/blogs ( A robbery à ... & Plagiaristic team ...)

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.