Greenhouse gases from farmland underestimated

Apr 02, 2013

(Phys.org)—Changes in agricultural practices could reduce soil emissions of the greenhouse gas nitrous oxide and the atmospheric pollutant nitric oxide, according to a new study by scientists at the University of California, Davis.

"Agriculture is the main source of nitrous oxide globally, so this study is a starting point to help us understand how to manage and control it," said UC Davis professor of soil biogeochemistry William Horwath, whose lab conducted the study.

Horwath holds the J.G. Boswell Endowed Chair in Soil Science at UC Davis. The work was published today in the journal Proceedings of the National Academy of Sciences.

The study was an effort to understand the sources of nitrous oxide and nitric oxide by different microbial processes, especially following the application of certain types.

Previous studies assumed that nitrous oxide production through ammonia oxidation occurs mainly when there is abundant oxygen in soils.

However, by manipulating oxygen levels and using isotopic analysis, the researchers found the reverse: The amount of nitrous oxide increased through this process when oxygen was extremely limited.

In their paper, the authors said their results imply that management practices such as fertilizer choice affect how much nitrous oxide is released. Specifically, to reduce nitrous oxide emissions, of urea should be avoided in soils where oxygen is limited, they wrote.

On the other hand, practices that increase soil aeration, reduce compaction, and enhance using organic matter could decrease from . Using nitrification inhibitors could help, as well.

"The results of this study will change the way we think about the source of nitrous oxide from soil," Horwath said. "It will help researchers and people making fertilizer recommendations begin to understand that they need to consider different soil processes more explicitly."

Explore further: Climate change and air pollution will combine to curb food supplies

add to favorites email to friend print save as pdf

Related Stories

Can biochar help suppress greenhouse gases?

Apr 20, 2011

Nitrous oxide is a potent greenhouse gas and a precursor to compounds that contribute to the destruction of the ozone. Intensively managed, grazed pastures are responsible for an increase in nitrous oxide emissions from grazing ...

Can biochar help suppress greenhouse gases?

Mar 18, 2011

Nitrous oxide is a potent greenhouse gas and a precursor to compounds that contribute to the destruction of the ozone. Intensively managed, grazed pastures are responsible for an increase in nitrous oxide ...

Studying Fertilizers to Cut Greenhouse Gases

Nov 18, 2009

(PhysOrg.com) -- Agricultural Research Service (ARS) scientists have found that using alternative types of fertilizers can cut back on greenhouse gas emissions, at least in one part of the country. They are ...

Nitrous oxide from ocean microbes

Dec 10, 2007

A large amount of the greenhouse gas nitrous oxide is produced by bacteria in the oxygen poor parts of the ocean using nitrites, Dr Mark Trimmer told journalists at a Science Media Centre press briefing today.

Study: Unexpected microbes fighting harmful greenhouse gas

Nov 21, 2012

The environment has a more formidable opponent than carbon dioxide. Another greenhouse gas, nitrous oxide, is 300 times more potent and also destroys the ozone layer each time it is released into the atmosphere through agricultural ...

Recommended for you

US plans widespread seismic testing of sea floor

Jul 26, 2014

(AP)—The U.S. government is planning to use sound blasting to conduct research on the ocean floor along most of the East Coast, using technology similar to that which led to a court battle by environmentalists in New Jersey.

Fire ecology manipulation by California native cultures

Jul 26, 2014

Before the colonial era, 100,000s of people lived on the land now called California, and many of their cultures manipulated fire to control the availability of plants they used for food, fuel, tools, and ritual. Contemporary ...

User comments : 0