Greenhouse gases from farmland underestimated

Apr 02, 2013

(Phys.org)—Changes in agricultural practices could reduce soil emissions of the greenhouse gas nitrous oxide and the atmospheric pollutant nitric oxide, according to a new study by scientists at the University of California, Davis.

"Agriculture is the main source of nitrous oxide globally, so this study is a starting point to help us understand how to manage and control it," said UC Davis professor of soil biogeochemistry William Horwath, whose lab conducted the study.

Horwath holds the J.G. Boswell Endowed Chair in Soil Science at UC Davis. The work was published today in the journal Proceedings of the National Academy of Sciences.

The study was an effort to understand the sources of nitrous oxide and nitric oxide by different microbial processes, especially following the application of certain types.

Previous studies assumed that nitrous oxide production through ammonia oxidation occurs mainly when there is abundant oxygen in soils.

However, by manipulating oxygen levels and using isotopic analysis, the researchers found the reverse: The amount of nitrous oxide increased through this process when oxygen was extremely limited.

In their paper, the authors said their results imply that management practices such as fertilizer choice affect how much nitrous oxide is released. Specifically, to reduce nitrous oxide emissions, of urea should be avoided in soils where oxygen is limited, they wrote.

On the other hand, practices that increase soil aeration, reduce compaction, and enhance using organic matter could decrease from . Using nitrification inhibitors could help, as well.

"The results of this study will change the way we think about the source of nitrous oxide from soil," Horwath said. "It will help researchers and people making fertilizer recommendations begin to understand that they need to consider different soil processes more explicitly."

Explore further: Implications for the fate of green fertilizers

add to favorites email to friend print save as pdf

Related Stories

Can biochar help suppress greenhouse gases?

Apr 20, 2011

Nitrous oxide is a potent greenhouse gas and a precursor to compounds that contribute to the destruction of the ozone. Intensively managed, grazed pastures are responsible for an increase in nitrous oxide emissions from grazing ...

Can biochar help suppress greenhouse gases?

Mar 18, 2011

Nitrous oxide is a potent greenhouse gas and a precursor to compounds that contribute to the destruction of the ozone. Intensively managed, grazed pastures are responsible for an increase in nitrous oxide ...

Studying Fertilizers to Cut Greenhouse Gases

Nov 18, 2009

(PhysOrg.com) -- Agricultural Research Service (ARS) scientists have found that using alternative types of fertilizers can cut back on greenhouse gas emissions, at least in one part of the country. They are ...

Nitrous oxide from ocean microbes

Dec 10, 2007

A large amount of the greenhouse gas nitrous oxide is produced by bacteria in the oxygen poor parts of the ocean using nitrites, Dr Mark Trimmer told journalists at a Science Media Centre press briefing today.

Study: Unexpected microbes fighting harmful greenhouse gas

Nov 21, 2012

The environment has a more formidable opponent than carbon dioxide. Another greenhouse gas, nitrous oxide, is 300 times more potent and also destroys the ozone layer each time it is released into the atmosphere through agricultural ...

Recommended for you

Implications for the fate of green fertilizers

1 hour ago

The use of green fertilizers is a practice that has been around since humans first began growing food, but researchers are warning that modern techniques for the creation of these fertilizers could have implications ...

Ditching coal a massive step to climate goal: experts

2 hours ago

Phasing out coal as an electricity source by 2050 would bring the world 0.5 degrees Celsius closer to the UN's targeted cap for climate warming, an analysis said on the eve of Tuesday's UN climate summit.

Monitoring heavy metals using mussels

5 hours ago

A research team in Malaysia has concluded that caged mussels are useful for monitoring heavy metal contamination in coastal waters in the Strait of Johore. Initial results indicate more pollution in the eastern ...

Climate change report identifies 'the most vulnerable'

7 hours ago

Extreme weather events leave populations with not enough food both in the short- and the long-term. A new report by the Environmental Change Institute (ECI) at the School of Geography and the Environment ...

User comments : 0