Discovery yields supertough, strong nanofibers

April 24, 2013
High-resolution scanning electron microscopy shows a portion of a large bundle of ultra-strong and tough continuous nanofibers developed by UNL researchers. Credit: Joel Brehm, Dimitry Papkov, Yuris Dzenis

University of Nebraska-Lincoln materials engineers have developed a structural nanofiber that is both strong and tough, a discovery that could transform everything from airplanes and bridges to body armor and bicycles.

Their findings are featured on the cover of this week's April issue of the American Chemical Society's journal, ACS Nano.

"Whatever is made of composites can benefit from our nanofibers," said the team's leader, Yuris Dzenis, McBroom Professor of Mechanical and Materials Engineering and a member of UNL's Nebraska Center for Materials and Nanoscience.

"Our discovery adds a new material class to the very select current family of materials with demonstrated simultaneously high strength and toughness."

In structural materials, holds that strength comes at the expense of toughness. Strength refers to a material's ability to carry a load. A material's toughness is the amount of energy needed to break it; so the more a material dents, or deforms in some way, the less likely it is to break. A ceramic plate, for example, can carry dinner to the table, but shatters if dropped, because it lacks toughness. A rubber ball, on the other hand, is easily squished out of shape, but doesn't break because it's tough, not strong. Typically, strength and toughness are mutually exclusive.

Dzenis and colleagues developed an exceptionally thin polyacrilonitrile nanofiber, a type of related to acrylic, using a technique called electrospinning. The process involves applying high voltage to a until a small jet of liquid ejects, resulting in a continuous length of nanofiber.

They discovered that by making the nanofiber thinner than had been done before, it became not only stronger, as was expected, but also tougher.

Dzenis suggested that toughness comes from the nanofibers' low . In other words, it has many areas that are structurally unorganized. These amorphous regions allow the to slip around more, giving them the ability to absorb more energy.

High-resolution scanning electron microscopy image shows strong, tough continuous nanofibers fabricated and studied by the University of Nebraska-Lincoln. Credit: Joel Brehm, Yan Zou, Yuris Dzenis

Most advanced fibers have fewer amorphous regions, so they break relatively easily. In an airplane, which uses many composite materials, an abrupt break could cause a catastrophic crash. To compensate, engineers use more material, which makes airplanes, and other products, heavier.

"If were tougher, one could make products more lightweight and still be very safe," Dzenis said.

, such as bulletproof vests, also requires a material that's both strong and tough. "To stop the bullet, you need the material to be able to absorb energy before failure, and that's what our will do," he said.

Explore further: Strength is shore thing for sea shell scientists

Related Stories

Strength is shore thing for sea shell scientists

March 8, 2010

( -- Scientists have made synthetic 'sea shells' from a mixture of chalk and polystyrene cups - and produced a tough new material that could make our homes and offices more durable.

Researchers establish how super strong insect legs are

May 18, 2012

( -- Researchers from Trinity College Dublin have shown that insects are made from one of the toughest natural materials in the world. The study’s findings have been recently published in the leading international ...

Recommended for you

Mathematicians identify limits to heat flow at the nanoscale

November 24, 2015

How much heat can two bodies exchange without touching? For over a century, scientists have been able to answer this question for virtually any pair of objects in the macroscopic world, from the rate at which a campfire can ...

New sensor sends electronic signal when estrogen is detected

November 24, 2015

Estrogen is a tiny molecule, but it can have big effects on humans and other animals. Estrogen is one of the main hormones that regulates the female reproductive system - it can be monitored to track human fertility and is ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.