Whale's streaming baleen tangles to trap food

March 13, 2013

Many whales filter food from water using racks of baleen plates in their mouths, but no one had ever investigated how baleen behaves in real life. According to Alexander Werth from Hampden-Sydney College, baleen was viewed as a static material, however, he discovered that baleen streams in water just like long hair and fringes from adjacent baleen plates tangle to form the perfect net for trapping food at natural whale swimming speeds.

Diving and plunging through the waves to feed, some whales throw their jaws wide and engulf colossal mouthfuls of fish-laden water while other species simply coast along with their mouths agape (ram or skim feeding), yet both feeding styles rely on a remarkable substance in the whales' mouths to filter nutrition from the ocean: baleen. Alexander Werth from Hampden-Sydney College, USA, explains that no one knew how the hairy substance actually traps morsels of food. 'The standard view was that baleen is just a static material and people had never thought of it moving or that its function would be altered by the flow of water through the mouth', he says. Werth became fascinated with the substance during his postdoc days, when he worked with the of Barrow, Alaska, and decided to find out more about how the filters whale-sized mouthfuls of water. He publishes his discovery that baleen is a highly mobile material that in flowing water to form the perfect net for trapping at natural whale swimming speeds in The Journal of Experimental Biology.

Explaining that baleen is composed of keratin – the same protein that makes hair and – Werth also describes how the protein forms large continually growing plates, each with an internal fibrous core sandwiched between smooth outer plates. Whales usually carry 300 of these structures on each side of their mouths – arranged perpendicular to the direction of water flowing into the mouth – and Werth explains that the plates are continually worn away by the tongue to form bristly food-trapping fringes on the tongue-edge of each plate. In addition, the baleen fringes of the skim-feeding bowhead whale's bristles are twice as long as the lunging humpback's. Having obtained baleen samples from the body of a stranded humpback during graduate work at the New England Aquarium and collected samples from ram-feeding bowheads in Alaska, Werth began to compare how well the baleen trapped minute latex beads carried in flowing water.

First, he tested a small section of each type of baleen in a flow tank as he varied the flow speed from 10 to 120 cm s and altered the inclination of the baleen to the water flow from parallel to perpendicular. Monitoring the fringes and recording how many beads became lodged for 2 s or more, Werth saw that the bristles trapped most beads at the lowest speeds, and as the flow increased the bristles began streaming like hair, increasing the fringe's porosity and reducing the number of snagged particles: single baleen plates are less effective filters at higher swimming speeds.

However, Werth says, 'It doesn't make sense to look at flow across a single plate of baleen, it's like looking at feeding with a single tooth; you can't chew anything with just one tooth, you need a whole mouthful.' So, he built a scaled down rack of six, 20 cm long baleen plate fragments and tested how well they trapped the latex beads.

This time, Werth could clearly see the fringes from adjacent baleen plates becoming tangled and more matted as the flow increased, trapping the most particles at speeds ranging from 70 to 80 cm/s, which corresponds exactly with the swimming speed of bowhead whales skimming through shoals of copepods. However, when he compared the porosity of the baleen of both species, he was surprised by the similarity of the performances, despite the ' different feeding styles.

Having found that baleen filters best at the natural swimming speed of skim-feeding bowheads, Werth is keen to scale up and investigate how full-sized 4 m long baleen plates perform

Explore further: Australian fossil unlocks secrets to the origin of whales

More information: Werth, A. J. (2013). Flow-dependent porosity and other biomechanical properties of mysticete baleen. J. Exp. Bio. 216, 1152-1159. jeb.biologists.org/content/216/7/1152.abstract

Related Stories

Humpback whales catch prey with bubble-nets

June 24, 2011

Marine biologist David Wiley of the National Oceanic and Atmospheric Administration (NOAA) and others report in the latest issue of Behaviour (Volume 148, Nos. 5-6) how humpback whales in the Gulf of Maine catch prey with ...

Study amplifies understanding of hearing in baleen whales

April 17, 2012

For decades, scientists have known that dolphins and other toothed whales have specialized fats associated with their jaws, which efficiently convey sound waves from the ocean to their ears. But until now, the hearing systems ...

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.