Radiation tolerant nanotwinned metals

February 1, 2013

Texas A&M University mechanical engineering researchers led by Dr. Xinghang Zhang have discovered ratiation-tolerant nanotwinned metals that could provide an important step forward for the design of materials for the next generation of nuclear reactors.

The paper, "Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals," was published Jan. 22 in Nature Communications.

In nuclear reactors, Zhang said, radiation damage in metallic can lead to serious degradation of mechanical properties. Stacking-fault tetrahedron (SFT) is a primary type of defect in irradiated face-centered cubic metals with low stacking fault energy, including copper, silver, gold and stainless steels. The removal of SFT is very challenging and typically requires annealing at very high temperatures, incorporation of interstitials or interaction with mobile dislocations.

During their in situ radiation experiments at Argonne National Laboratory, Zhang's graduate students Kaiyuan Yu and Cheng Sun discovered an alternative route to remove SFTs in nanotwinned silver. A large number of SFTs were removed or truncated during their frequent interactions with abundant coherent twin boundaries, and thus the density of SFTs in nanotwinned film decreased sharply compared to its bulk counterpart.

This study provides an important step forward for the design of advanced swelling-resistant structural materials for next generation nuclear reactors.

Explore further: Model simulates atomic processes in nanomaterials

Related Stories

Model simulates atomic processes in nanomaterials

March 1, 2007

Researchers from MIT, Georgia Institute of Technology and Ohio State University have developed a new computer modeling approach to study how materials behave under stress at the atomic level, offering insights that could ...

Scientists discover new principle in material science

April 7, 2010

(PhysOrg.com) -- Materials scientists have known that a metal's strength (or weakness) is governed by dislocation interactions, a messy exchange of intersecting fault lines that move or ripple within metallic crystals. But ...

Materials science: Perfecting the defect

May 3, 2012

Strong metals have a tendency to be less ductile — unless the metal happens to be a peculiar form of copper known as nanotwinned copper. The crystal structure of nanotwinned copper exhibits many closely-spaced interruptions ...

Recommended for you

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.