Physicists test highly flexible organic semiconductors

Feb 15, 2013

Rutgers University physicists have demonstrated extremely flexible organic semiconductors that withstood multiple bending cycles in which the devices were rolled to a radius as small as 200 micrometers. The technology holds promise for making low-cost flexible electronics—conceivably video displays that bend like book pages or roll and unroll like posters, or wearable circuitry sewn into uniforms or athletic wear.

Organic semiconductors hold promise for making low-cost flexible electronics – conceivably that bend like book pages or roll and unroll like posters, or wearable sewn into uniforms or athletic wear. Researchers have demonstrated the ability to "print" transistors made of organic crystals on flexible plastic sheets, using technology that resembles inkjet or gravure printing.

However, for the technology's potential to be realized, scientists have to show that these organic semiconductors will withstand the rugged handling they invite – they will need to perform reliably in spite of frequent flexing and sharp bending.

In an article published Dec. 11, 2012 in Nature Communications, scientists led by Rutgers University physicist Vitaly Podzorov report they have demonstrated extremely flexible organic semiconductors that withstood multiple bending cycles in which the devices were rolled to a radius as small as 200 micrometers. The scientists worked with numerous crystalline devices they made and found no in their performance.

Podzorov claims his is the first rigorous study of solution-crystallized organic semiconductors under various types of strain - sharp bending and repeated flexing along with compression and stretching. He acknowledges some earlier encouraging studies of mechanical , but felt those lacked rigorous tests of flexibility involving different types of organic semiconductors, especially those that show the most promise for development of low-cost printed electronics. The scientists at Rutgers focused on two soluble small molecules (developed in the group of Prof. John Anthony at the University of Kentucky), depositing and crystallizing them on thin plastic sheets from solution, and claim the results should apply to numerous other organic formulations that researchers are investigating.

Explore further: The unifying framework of symmetry reveals properties of a broad range of physical systems

More information: www.nature.com/ncomms/journal/… full/ncomms2263.html

Related Stories

Organic chips - not just in your kitchen anymore

Feb 22, 2011

(PhysOrg.com) -- IMEC researchers at the International Solid-State Circuits Conference, in San Francisco, California are expected to introduce a microprocessor made with organic semiconductors.

Recommended for you

What time is it in the universe?

Aug 29, 2014

Flavor Flav knows what time it is. At least he does for Flavor Flav. Even with all his moving and accelerating, with the planet, the solar system, getting on planes, taking elevators, and perhaps even some ...

Watching the structure of glass under pressure

Aug 28, 2014

Glass has many applications that call for different properties, such as resistance to thermal shock or to chemically harsh environments. Glassmakers commonly use additives such as boron oxide to tweak these ...

Inter-dependent networks stress test

Aug 28, 2014

Energy production systems are good examples of complex systems. Their infrastructure equipment requires ancillary sub-systems structured like a network—including water for cooling, transport to supply fuel, and ICT systems ...

Explainer: How does our sun shine?

Aug 28, 2014

What makes our sun shine has been a mystery for most of human history. Given our sun is a star and stars are suns, explaining the source of the sun's energy would help us understand why stars shine. ...

User comments : 0