A macromolecular shredder for RNA: Researchers unravel the structure of the machinery for RNA disposal

Feb 04, 2013

Much in the same way as we use shredders to destroy documents that are no longer useful or that contain potentially damaging information, cells use molecular machines to degrade unwanted or defective macromolecules. Scientists of the Max Planck Institute of Biochemistry in Martinsried near Munich, Germany, have now decoded the structure and the operating mechanism of the Exosome, a macromolecular machine responsible for degradation of ribonucleic acids (RNAs) in eukaryotes. RNAs are ubiquitous and abundant molecules with multiple functions in the cell. One of their functions is, for example, to permit translation of the genomic information into proteins.

The results of the studies now published in the journal Nature show that the structural architecture and the main operation mode of the Exosome are conserved in all domains of life.

Any errors that occur during the synthesis of or unwanted accumulation of RNAs can be damaging to the cell. The elimination of defective RNAs or of RNAs that are no longer needed are therefore key steps in the metabolism of a cell. The Exosome, a multi-protein complex, is a key machine that shreds RNA into pieces. In addition, the Exosome also processes certain RNA molecules into their mature form. However, the of how the Exosome performs these functions has been elusive.

A ubiquitous molecular shredder

Debora Makino, a postdoctoral researcher in the Research Department led by Elena Conti has now obtained an picture of the complete eukaryotic Exosome complex bound to an RNA molecule. The structure of this complex allowed the scientists to understand how the Exosome works. "It is quite an elaborate machine: the Exosome complex forms a hollow barrel formed by nine different proteins through which RNA molecules are threaded to reach a tenth protein, the catalytic subunit that then shreds the RNA into pieces," says Debora Makino. The barrel is essential for this process because it helps to unwind the RNA and prepares it for shredding. "Cells lacking any of the ten proteins do not survive and this shows that not only the catalytic subunit but also the entire barrel is critical for the function of the Exosome," Makino explains.

The RNA-binding and threading mechanism used by the Exosome in eukaryotes is very similar to that of the Exosome in bacteria and archaebacteria that the researchers had structurally characterized in earlier studies. "Although the chemistry of the shredding reaction in eukaryotes is very different from that used in bacteria and archaebacteria, the channeling mechanism of the Exosome is conserved, and conceptually similar to the channeling mechanism used by the Proteasome, a complex for shredding proteins," says Elena Conti. In the future, the researchers want to understand how the Exosome is selectively targeted by the RNAs earmarked for degradation and how it is regulated in the different cellular compartments.

Explore further: Researchers find protein necessary for fertility performs different roles in sperm, eggs

More information: Makino, D.L., Baumgärtner, M., Conti, E. Crystal Structure of an 11-Subunit Eukaryotic Exosome Complex Bound to RNA. Nature, February 3, 2013.
DOI: 10.1038/nature11870

add to favorites email to friend print save as pdf

Related Stories

Chopped up proteins trigger autoimmunity

Jan 24, 2008

Multipotent adult progenitor stem cells extracted from bone marrow, and known as MAPCs, have proved to be effective in the regeneration of blood vessel tissue and also in muscle tissue when treating peripheric vascular disease.

The key (proteins) to self-renewing skin

Jul 05, 2012

In the July 6 issue of Cell Stem Cell, researchers at the University of California, San Diego School of Medicine describe how human epidermal progenitor cells and stem cells control transcription factors to avo ...

Mechanism of microRNAs deciphered

May 16, 2007

Over 30% of our genes are under the control of small molecules called microRNAs. They prevent specific genes from being turned into protein and regulate many crucial processes like cell division and development, but how they ...

Recommended for you

In a role reversal, RNAs proofread themselves

Jan 29, 2015

Building a protein is a lot like a game of telephone: information is passed along from one messenger to another, creating the potential for errors every step of the way. There are separate, specialized enzymatic ...

Growing functioning brain tissue in 3D

Jan 29, 2015

Researchers at the RIKEN Center for Developmental Biology in Japan have succeeded in inducing human embryonic stem cells to self-organize into a three-dimensional structure similar to the cerebellum, providing ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.