A macromolecular shredder for RNA: Researchers unravel the structure of the machinery for RNA disposal

February 4, 2013

Much in the same way as we use shredders to destroy documents that are no longer useful or that contain potentially damaging information, cells use molecular machines to degrade unwanted or defective macromolecules. Scientists of the Max Planck Institute of Biochemistry in Martinsried near Munich, Germany, have now decoded the structure and the operating mechanism of the Exosome, a macromolecular machine responsible for degradation of ribonucleic acids (RNAs) in eukaryotes. RNAs are ubiquitous and abundant molecules with multiple functions in the cell. One of their functions is, for example, to permit translation of the genomic information into proteins.

The results of the studies now published in the journal Nature show that the structural architecture and the main operation mode of the Exosome are conserved in all domains of life.

Any errors that occur during the synthesis of or unwanted accumulation of RNAs can be damaging to the cell. The elimination of defective RNAs or of RNAs that are no longer needed are therefore key steps in the metabolism of a cell. The Exosome, a multi-protein complex, is a key machine that shreds RNA into pieces. In addition, the Exosome also processes certain RNA molecules into their mature form. However, the of how the Exosome performs these functions has been elusive.

A ubiquitous molecular shredder

Debora Makino, a postdoctoral researcher in the Research Department led by Elena Conti has now obtained an picture of the complete eukaryotic Exosome complex bound to an RNA molecule. The structure of this complex allowed the scientists to understand how the Exosome works. "It is quite an elaborate machine: the Exosome complex forms a hollow barrel formed by nine different proteins through which RNA molecules are threaded to reach a tenth protein, the catalytic subunit that then shreds the RNA into pieces," says Debora Makino. The barrel is essential for this process because it helps to unwind the RNA and prepares it for shredding. "Cells lacking any of the ten proteins do not survive and this shows that not only the catalytic subunit but also the entire barrel is critical for the function of the Exosome," Makino explains.

The RNA-binding and threading mechanism used by the Exosome in eukaryotes is very similar to that of the Exosome in bacteria and archaebacteria that the researchers had structurally characterized in earlier studies. "Although the chemistry of the shredding reaction in eukaryotes is very different from that used in bacteria and archaebacteria, the channeling mechanism of the Exosome is conserved, and conceptually similar to the channeling mechanism used by the Proteasome, a complex for shredding proteins," says Elena Conti. In the future, the researchers want to understand how the Exosome is selectively targeted by the RNAs earmarked for degradation and how it is regulated in the different cellular compartments.

Explore further: Mechanism of microRNAs deciphered

More information: Makino, D.L., Baumgärtner, M., Conti, E. Crystal Structure of an 11-Subunit Eukaryotic Exosome Complex Bound to RNA. Nature, February 3, 2013.
DOI: 10.1038/nature11870

Related Stories

Mechanism of microRNAs deciphered

May 16, 2007

Over 30% of our genes are under the control of small molecules called microRNAs. They prevent specific genes from being turned into protein and regulate many crucial processes like cell division and development, but how they ...

Chopped up proteins trigger autoimmunity

January 24, 2008

Multipotent adult progenitor stem cells extracted from bone marrow, and known as MAPCs, have proved to be effective in the regeneration of blood vessel tissue and also in muscle tissue when treating peripheric vascular disease.

Recommended for you

'Hog-nosed rat' discovered in Indonesia

October 6, 2015

Museum of Natural Science Curator of Mammals Jake Esselstyn at Louisiana State University and his international collaborators have discovered a new genus and species on a remote, mountainous island in Indonesia. This new ...

Stress in adolescence prepares rats for future challenges

October 5, 2015

Rats exposed to frequent physical, social, and predatory stress during adolescence solved problems and foraged more efficiently under high-threat conditions in adulthood compared with rats that developed without stress, according ...

Most EU nations seek to bar GM crops

October 4, 2015

Nineteen of the 28 EU member states have applied to keep genetically modified crops out of all or part of their territory, the bloc's executive arm said Sunday, the deadline for opting out of new European legislation on GM ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.