Fullerene crystals with bimodal pore architectures

February 22, 2013
Synthetic route of producing mesoporous crystalline fullerene using a liquid-liquid interface

A research group headed by MANA Scientist Dr. Lok Kumar Shrestha of the Supermolecules Unit, for the first time demonstrated template-free novel mesoporous carbon material: fullerene (C60) crystals with bimodal pore architectures and having highly crystallized framework. Experiments have proven that this novel meso- and macroporous material show better electrochemical performance compared to pristine C60 due to higher electrochemically active surface areas.

In this research, novel fullerene (C60) crystals with bimodal mesoporous and macroporous structures composed of a highly crystallized framework has prepared by using a liquid-liquid interfacial precipitation (LLIP) method involving the interface between isopropyl alcohol (IPA) and a of C60 in a mixture of benzene and (CCl4). The resulting mesoporous C60 exhibits two-dimensional (2D) hexagonal plate morphology.

Porosity and electrochemically active surface area could be flexibly controlled by increasing the mixing fraction of CCl4 and benzene. The synergistic effect of mixing solvents (CCl4 and benzene) is mainly responsible for the formation of such . Otherwise, in an individual IPA/CCl4 and IPA/benzene system, 2D plate like and 1D nanowhiskers morphology without pores are observed. In solution-based crystallization (LLIP method), solvent molecule gets entrapped during crystallization, which upon slow release/or evaporation creates a porous structure. It is expected that this methodological innovation will be a milestone for the production of highly crystalline carbon-based materials offering better performance in catalytic, electrochemical, and sensing properties.

These research results are recently published in Journal of American Chemical Society, 2013, 135, 586-589.

Explore further: Fair Trade: Lanthanum chloride catalyzes hydrogen–chlorine exchange between chlorinated hydrocarbons

Related Stories

Graphene decoupling of organic/inorganic interfaces

June 19, 2012

(Phys.org) -- Cryogenic ultrahigh vacuum scanning tunneling microscopy (STM) was employed by researchers in the Center for Nanoscale Materials Electronic & Magnetic Materials & Devices Group at the Argonne National Laboratory ...

The search for new materials for hydrogen storage

September 20, 2012

(Phys.org)—Hydrogen is the ideal fuel for new types of fuel cell vehicles, but one problem is how to store hydrogen. In his doctoral dissertation Serhiy Luzan studies new types of materials for hydrogen storage. He also ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.