The effective collective: Grouping could ensure animals find their way in changing environment

Jan 31, 2013

For social animals such as schooling fish, the loss of their numbers to human activity could eventually threaten entire populations, according to a finding that such animals rely heavily on grouping to effectively navigate their environment.

Princeton University researchers report in the journal Science that collective intelligence is vital to certain animals' ability to evaluate and respond to their environment. Conducted on fish, the research demonstrated that small groups and individuals become disoriented in complex, changing environments. However, as group size is increased, the fish suddenly became highly responsive to their surroundings.

These results should prompt a close examination of how endangered group or herd animals are preserved and managed, said senior researcher Iain Couzin, a Princeton professor of ecology and . If depend on collective intelligence for migration, breeding and locating essential resources, they could be imperiled by any activity that diminishes or divides the group, such as overhunting and , he explained.

This video is not supported by your browser at this time.
This video shows an overhead view of a short segment of an experiment (top panel) and demonstrates how the tracking software uses the infrared footage to extract the positions and trajectories of the fish (bottom panel). This video has been sped up to twice normal speed. Credit: Colin J. Torney

"Processes that increase group or reduce population density may initially appear to have little influence, yet a further reduction in group size may suddenly and dramatically impact the capacity of a species to respond effectively to their environment," Couzin said. "If the mechanism we observed is found to be widespread, then we need to be aware of tipping points that could result in the sudden collapse of ."

The work is among the first to experimentally explain the extent to which collective intelligence improves awareness of complex environments, the researchers write. Collective intelligence is an established advantage of groups, including humans. As it's understood, a group of individuals gain an advantage by pooling imperfect estimates with those around them, which more or less "averages" single experiences into surprisingly accurate . For instance, the paper in Science cites a 1907 study that predicted with near precision the weight of an ox based on the estimates of 787 people.

With their work, Couzin and his coauthors uncovered an additional layer to understanding collective intelligence. The conventional view assumes that individual group members have some level of knowledge albeit incomplete. Yet the Princeton researchers found that in some cases individuals have no ability to estimate how a problem needs to be solved, while the group as a whole can find a solution through their social interactions. Moreover, they found that the more numerous the neighbors, the richer the individual—and thus group—knowledge is.

These findings correlate with recent research showing that —even in humans—can rely less on the intelligence of each group member than on the effectiveness of their communal interaction, Couzin said. In humans, research suggests that such cooperation would take the form of open and equal communication among individuals regardless of their respective smarts, he said.

The researchers placed fish known as golden shiners in experimental tanks in groups as low as one and as high as 256. The tanks featured a moving light field that was bright on the outer edges and tapered into a dark center. To reflect the changing nature of natural environments, they also incorporated small patches of darkness that moved around randomly. Prolific schoolers and enthusiasts of darkness, the golden shiners would pursue the shaded areas as the researchers recorded their movement using computer vision software. Although the fish sought the shade regardless of group size, their capability to do so increased dramatically once groups spanned a large enough area.

The researchers then tracked the motion of individual fish to gauge the role of social influence on their movement. They found that individuals adjusted their speed according to local light level by moving faster in more brightly lit areas, but without social influence the fish did not necessarily turn toward the darker regions. Groups, however, readily swam to dark areas and were able to track those preferred regions as they moved.

This collective sensing emerged due to the coherent nature of social interactions, the authors report. As one side of the group slowed and turned toward the shaded area, the other members did as well. Also, slowing down increased density and resulted in darker regions becoming more attractive to these .

Explore further: Meteorite that doomed dinosaurs remade forests

More information: The paper, "Emergent sensing of complex environments by mobile animal groups," was published online Jan. 31 by Science.

Related Stories

Study finds that diversity can trump ability

Apr 21, 2011

Dr Dick James from the Department of Physics at the University of Bath, UK, working with other colleagues from Germany and the UK, has found that decision making among groups can be significantly better than ...

Fish follow the rules to school

Nov 07, 2011

The rules of school are simple: it is all about watching the kid nearest to you and making sure you do what they do. Researchers at the mathematics department at Uppsala University, together with biologists at Sydney University ...

Recommended for you

Meteorite that doomed dinosaurs remade forests

24 minutes ago

The meteorite impact that spelled doom for the dinosaurs 66 million years ago decimated the evergreens among the flowering plants to a much greater extent than their deciduous peers, according to a study ...

New camera sheds light on mate choice of swordtail fish

2 hours ago

We have all seen a peacock show its extravagant, colorful tail feathers in courtship of a peahen. Now, a group of researchers have used a special camera developed by an engineer at Washington University in ...

App helps homeowners identify spiders

5 hours ago

Each autumn the number of spiders seen indoors suddenly increases as males go on the hunt for a mate. The Society of Biology is launching a new app to help the public learn more about the spiders that will ...

User comments : 0