New study shows how copper restricts the spread of global antibiotic-resistant infections

December 4, 2012
This is Professor Bill Keevil in his lab. Credit: University of Southampton

New research from the University of Southampton has shown that copper can prevent horizontal transmission of genes, which has contributed to the increasing number of antibiotic-resistant infections worldwide.

(HGT) in bacteria is largely responsible for the development of , which has led to an increasing number of difficult-to-treat healthcare-associated infections (HCAIs).

The newly-published paper, which appears in the journal mBio, shows that while HGT can take place in the environment, on frequently-touched surfaces, such as door handles, trolleys and tables, which are made from stainless steel – copper prevents this process from occurring and rapidly kills bacteria on contact.

Lead author Professor Bill Keevil, Chair in Environmental Healthcare at the University of Southampton, explains: "Whilst studies have focussed on HGT in vivo (an experiment that is done in the body of a ), this work investigates whether the ability of pathogens to persist in the environment, particularly on touch surfaces, may also play an important role. Here we show prolonged survival of multidrug resistant and Klebsiella pneumoniae on stainless steel surfaces for several weeks. However, rapid death of both antibiotic- and destruction of and genomic DNA was observed on copper and surfaces, which could be useful in the prevention of infection spread and gene transfer."

Showing that horizontal transmission of genes (for example, those governing antibiotic resistance) occurs on touch surfaces, supports the important role of the environment in .

This is Professor Bill Keevil and Research Fellow Sarah Warnes in the lab. Credit: University of Southampton

Professor Keevil summarises: "We know many human pathogens survive for long periods in the hospital environment and can lead to infection, expensive treatment, blocked beds and death. What we have shown in this work is the potential for strategically-placed antimicrobial copper touch surfaces to not only break the chain of contamination, but also actively reduce the risk of antibiotic resistance developing at the same time. Provided adequate cleaning continues in critical environments, copper can be employed as an important additional tool in the fight against pathogens."

Beyond the healthcare environment, copper also has a wider role to play in infection control. Professor Keevil explains: "Copper touch surfaces have promise for preventing antibiotic resistance transfer in public buildings and mass transportation systems, which lead to local and – in the case of jet travel – rapid worldwide dissemination of multi-drug resistant superbugs as soon as they appear.

"People with inadequate hand hygiene could exchange their bugs and different antibiotic resistance genes just by touching a stair rail or door handle, ready to be picked up by someone else and passed on. Copper substantially reduces and restricts the spread of these infections, making an important contribution to improved hygiene and, consequently, health."

Installations of copper touch surfaces have already taken place across the UK and around the world, harnessing copper's ability to continuously reduce bioburden and consequently the risk of HCAI transmission. This research offers additional evidence to deploy copper (and copper-containing alloys that benefit from the metal's antimicrobial properties) in the form of touch surfaces to provide extra protection alongside standard hygiene practices.

Explore further: Copper can help in the battle against influenza A H1N1, scientist says

Related Stories

Will copper keep us safe from the superbugs?

December 1, 2009

Three papers scheduled for publication in the January issue of the Journal of Hospital Infection, published by Elsevier, suggest that copper might have a role in the fight against healthcare-associated infections.

MRSA eliminated by copper in live global broadcast

April 4, 2011

A live broadcast from the University of Southampton today (4 April 2011) highlighted the effectiveness of antimicrobial copper in preventing the spread of antibiotic-resistant organisms, such as MRSA, in hospitals.

Copper surfaces could reduce hospital acquired infections

July 23, 2012

Research from the Medical University of South Carolina suggests that adding copper to hospital surfaces which are commonly touched by medical personnel and patients could help reduce the risk of hospital-acquired infections. ...

Recommended for you

Study suggests fish can experience 'emotional fever'

November 25, 2015

(—A small team of researchers from the U.K. and Spain has found via lab study that at least one type of fish is capable of experiencing 'emotional fever,' which suggests it may qualify as a sentient being. In their ...

A huge chunk of a tardigrade's genome comes from foreign DNA

November 23, 2015

Researchers from the University of North Carolina at Chapel Hill have sequenced the genome of the nearly indestructible tardigrade, the only animal known to survive the extreme environment of outer space, and found something ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

not rated yet Dec 04, 2012
Probably can't scale this due to the cost of copper. Perhaps a composite material with copper nano-particles?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.