Research may offer big benefits for biofuels and battling infections

Dec 14, 2012

(Phys.org)—Researchers at the University of Virginia School of Medicine have deciphered the secrets of the production of cellulose, the most common natural polymer on Earth, in a discovery that could have major ramifications for both biofuel production and the battle against bacterial infections.

The findings are of particular interest to the federal , which is seeking ways to break down plant cells more easily to facilitate the production of biofuels. Understanding the production and of cellulose, the primary component of plants' cell walls, may lead to new ways to tear it down or create plants with weaker walls.

Similarly, the U.Va. findings may offer new targets for battling and preventing the spread of infections. Cellulose is one of the components that bacteria produce to create strong, spongy coatings – called "biofilms" – that allow them to clump together and cling to surfaces. The plaque that forms on teeth, for example, is a .

"If we can prevent biofilm formation, we would expect to make it easier to get rid of the bacteria – to actually kill it," U.Va. researcher Jochen Zimmer said. "And you could also prevent them from adhering to the surgical devices and other tools used in hospitals."

In a paper published Dec. 9 in the online edition of the journal Nature, the U.Va. researchers map out the three-dimensional architecture of the enzyme complex responsible for cellulose production. The researchers first determined the components necessary to produce and secrete cellulose and then solved the structure of the enzyme complex. Their study reveals how new cellulose polymers are extruded from a cell through a channel, a bit like a spider spinning a thread of , and how this process is intimately linked to the formation of cellulose.

Until now, the end result was understood, but the process itself was largely unknown.

The enzyme is unique in that it both produces cellulose polymers (by attaching molecules) and pushes them outside the cell simultaneously; usually the division of labor is different, with production and movement either handled separately or handled by different enzymes.

"By capturing the crystal structure of part of a protein complex that both synthesizes and transfers cellulose out of a bacterium one sugar unit at a time, this work provides a window into the details of a unique cellular mechanism," says Pamela Marino of the National Institutes of Health's National Institute of General Medical Sciences, which partly funded the work. "A similar process is likely at work in the synthesis and secretion of key carbohydrate polymers in other organisms, such as hyaluronan in mammals."

In building a three-dimensional model of the atomic architecture, the U.Va. team members were surprised to observe what they had thought almost impossible: They had captured an image of a new cellulose being synthesized and transported from the inside of a cell to the outside. This was most unexpected, both because the process is transitory and because the submicroscopic imaging required – a combination of X-ray diffraction and advanced math – can work only with an extremely stable and uniform ensemble of proteins.

Zimmer expects U.Va.'s findings to be significant both to biofuel production and the field of medicine, but its impact could reach even farther. He says the U.Va. team plans to extend its research to look at the biosynthesis of chitin, an essential component of the shells of insects. Preventing the formation of chitin, he says, could make for a very effective form of pest control.

The U.Va. paper, "Crystallographic snapshot of synthesis and membrane translocation," written by Jacob L.W. Morgan, Joanna Strumillo  and Zimmer, was published online by Nature and will appear in a forthcoming print edition. It is the second article U.Va.'s Department of Molecular Physiology and Biological Physics has had published in Nature since Nov. 15.

Explore further: The origin of the language of life

More information: www.nature.com/nature/journal/… ull/nature11744.html

Related Stories

CSI at the service of cellulose synthesis

Jul 20, 2010

(PhysOrg.com) -- Grains, vegetables and fruit taste delicious and are important sources of energy. However, humans cannot digest the main component of plants - the cellulose in the cell wall. Even in ruminants, ...

Formation of cellulose fibers tracked for the first time

Apr 20, 2006

Cellulose--a fibrous molecule found in all plants--is the most abundant biological material on Earth. It is also a favored target of renewable, plant-based biofuels research. Despite overwhelming interest, ...

Cellulose breakdown

Jun 24, 2011

Ionic liquids have emerged as promising new solvents capable of disrupting the cellulose crystalline structure in a wide range of biomass feedstocks.

Recommended for you

The origin of the language of life

Dec 19, 2014

The genetic code is the universal language of life. It describes how information is encoded in the genetic material and is the same for all organisms from simple bacteria to animals to humans. However, the ...

Quest to unravel mysteries of our gene network

Dec 18, 2014

There are roughly 27,000 genes in the human body, all but a relative few of them connected through an intricate and complex network that plays a dominant role in shaping our physiological structure and functions.

EU court clears stem cell patenting

Dec 18, 2014

A human egg used to produce stem cells but unable to develop into a viable embryo can be patented, the European Court of Justice ruled on Thursday.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.