Research shows graphene nanopores can be controlled

Oct 02, 2012
These are transmission electron microscope images of a nanopore in graphene. The original pore on the left grows considerably under the influence of the electron beam. The image on the right is the spore after four minutes at 800 °C.  Pores either shrink or grow depending on the temperature and electron beam irradiation.

(Phys.org)—Engineers at the University of Texas at Dallas have used advanced techniques to make the material graphene small enough to read DNA.

Shrinking the size of a graphene pore to less than one nanometer – small enough to thread a  – opens the possibility of using graphene as a low-cost tool to sequence DNA.

"Sequencing DNA at a very cheap cost would enable scientists and doctors to better predict and diagnose disease, and also tailor a drug to an individual's genetic code," said Dr. Moon Kim, professor of materials science and engineering. He was senior author of an article depicted on the cover of the September print edition of Carbon.

The first reading, or sequencing, of human DNA by the international scientific research group known as the cost about $2.7 billion. Engineers have been researching alternative nanomaterials materials that can thread DNA strands to reduce the cost to less than $1,000 per person.

It was demonstrated in 2004 that graphite could be changed into a sheet of bonded carbon atoms called graphene, which is believed to be the strongest material ever measured. Because graphene is thin and strong, researchers have searched for ways to control its . They have not had much success. A nanoscale sensor made of graphene could be integrated with existing silicon-based electronics that are very advanced and yet cheap, to reduce costs.

In this study, Kim and his team manipulated the size of the nanopore by using an electron beam from an advanced and in-situ heating up to 1200 degree Celsius temperature.

"This is the first time that the size of the graphene nanopore has been controlled, especially shrinking it," said Kim. "We used high temperature heating and simultaneously, one technique without the other doesn't work."

Now that researchers know the pore size can be controlled, the next step in their research will be to build a .

"If we could cheaply, the possibilities for disease prevention, diagnosis and treatment would be limitless," Kim said. "Controlling graphene puts us one step closer to making this happen."

Explore further: Thinnest feasible nano-membrane produced

Related Stories

DNA through graphene nanopores

Jul 12, 2010

A team of researchers from Delft University of Technology (The Netherlands) announces a new type of nanopore devices that may significantly impact the way we screen DNA molecules, for example to read off their sequence. In ...

Physicists use graphene to decode DNA

Dec 01, 2010

Genome sequencing will have a profound effect on our understanding of genetic biology and could usher in a day when doctor and patient are able to review individual genome sequences to fully personalise medical ...

Harvard's graphene DNA sequencing licensed

Mar 11, 2011

Oxford Nanopore Technologies today announced an exclusive agreement with Harvard University's Office of Technology Development for the development of graphene for DNA sequencing. Graphene is a robust, single ...

Graphene may hold key to speeding up DNA sequencing

Sep 10, 2010

September 9, 2010 - In a paper published as the cover story of the September 9, 2010 Nature, researchers from Harvard University and MIT have demonstrated that graphene, a surprisingly robust planar sheet ...

Self-cooling observed in graphene electronics

Apr 03, 2011

With the first observation of thermoelectric effects at graphene contacts, University of Illinois researchers found that graphene transistors have a nanoscale cooling effect that reduces their temperature.

Recommended for you

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Apr 17, 2014

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Making 'bucky-balls' in spin-out's sights

Apr 16, 2014

(Phys.org) —A new Oxford spin-out firm is targeting the difficult challenge of manufacturing fullerenes, known as 'bucky-balls' because of their spherical shape, a type of carbon nanomaterial which, like ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

ScooterG
1 / 5 (2) Oct 04, 2012
Maybe this could be a strong and inexpensive RO filter?

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...