Researchers use fruit flies to study proto-oncogenes

October 12, 2012 by Dennis Walikainen
Pupae (A and E) and adult (B, C, and D) fruit flies showing lateral (l), median (m), dorsal (d), and dorsal midline shade (dms) spots.

(Phys.org)—Spots on the butts of fruit flies are really, really small. But what a researcher and his graduate student are discovering about them could be gigantic.

Thomas Werner, assistant professor of at Michigan Technological University, and his PhD student, Komal Kumar Bollepogu Raja, have discovered that three that cause cancer and disease in humans also "paint" the spots on the fly's body. This discovery could enable researchers to study how those genes work in and apply that knowledge to treating cancer in people.

"The last common ancestor of man and fruit flies lived about 600 million years ago," says Werner. "All the genes needed to build a body were already present in that ancestor, and today we still share virtually all of our body-building genes with fruit flies. This is why we are able to study human diseases like cancer in fruit flies."

Werner and Raja are interested in how DNA encodes body forms and patterns in animals. They use as a model.

They've made strong connections between developed spots and three genes, all of which have cancer- and disease-causing counterparts in humans. Thus, the abdominal spots of this tiny fruit fly could be a great model for understanding genetic pathways that cause cancer.

"We are looking here at proto-oncogenes, which are cancer genes that cause disease when they are active in an uncontrolled manner," Werner explains. "Both humans and flies have them, and in flies they learned to paint black spots on the abdomen."

This reveals that old genes can learn new tricks; they just need to become part of a new , like, in this case, adding designer patterns to a boring garment. "And you get your evolutionary novelty without having to invent new genes," Werner says.

Werner's been down this research road before. He introduced stripes onto the spotted wings of fruit flies ("from a leopard to a zebra"), showing that a certain is sufficient to induce pigment patterns on Drosophila wings, and landed on the cover of Nature, one of the leading scientific journals in the world.

"Now we want to use our new methods to find out how the abdominal pigment pattern is generated, and how it is encoded in DNA," says Raja."

The genes that seem to paint the pigment spots on the abdomen are important for other reasons, Werner says. Some of them have additional roles in defining the head-to-tail axis in animals and are crucial for the proper development of the vertebrae in humans. If these genes misbehave during the development of the human embryo, gross disabilities or embryonic death will occur.

"Many diseases like cancer and vertebra-related disabilities are caused by the 'misbehavior' of genes, when they are expressed at times and places or in amounts they are not supposed to be," Werner says. "Our work focuses on understanding how the cancer- and disease-causing genes in the fruit fly are regulated, and how they regulate their downstream target genes."

The biggest promise for the future, however, involves those three "bad" genes. By studying them, Werner and Raja believe they can identify targets for gene therapies against and genetically inherited developmental defects.

Targeting these genes when they start misbehaving could lead to happier and healthier tomorrows for many people: a grand result from research on miniscule flies.

Explore further: Mammals, fruit flies: same biological clock

Related Stories

Human aging gene found in flies

May 12, 2008

Scientists funded by the Biotechnology and Biological Sciences Research Council (BBSRC) have found a fast and effective way to investigate important aspects of human ageing. Working at the University of Oxford and The Open ...

Recommended for you

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

Study shows female frogs susceptible to 'decoy effect'

August 28, 2015

(Phys.org)—A pair of researchers has found that female túngaras, frogs that live in parts of Mexico and Central and South America, appear to be susceptible to the "decoy effect." In their paper published in the journal ...

Why a mutant rice called Big Grain1 yields such big grains

August 24, 2015

(Phys.org)—Rice is one of the most important staple crops grown by humans—very possibly the most important in history. With 4.3 billion inhabitants, Asia is home to 60 percent of the world's population, so it's unsurprising ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.