Scientists employ powerful laser to breathe new life into old technology for studying atomic-level structures

Sep 19, 2012
This is UCSB's free electron laser. Credit: UCSB

A multi-university team has employed a high-powered laser to dramatically improve one of the tools scientists use to study the world at the atomic level. The team was able to use their amped-up electron paramagnetic resonance (EPR) spectrometer to study the electron spin of free radicals and nitrogen atoms trapped inside a diamond.

The improvement will pull back the veil that shrouds the molecular world, allowing scientists to study at a high resolution.

The team, which includes researchers from USC, the University of California-Santa Barbara and Florida State University, will publish their findings in Nature on September 20.

"We developed the world's first free-electron laser powered EPR spectrometer. This ultra high-frequency high-power EPR system gives us extremely good time resolution. For example, it enables us to film in motion," said Susumu Takahashi, assistant professor of Chemistry at the USC Dornsife College of Letters, Arts and Sciences, and lead author of the Nature paper.

This is an EPR spectrometer at UCSB. Credit: Susumu Takahashi

By using a high-powered laser based at UC Santa Barbara, the researchers were able to significantly enhance EPR spectroscopy, which uses electromagnetic radiation and magnetic fields to excite electrons. The excited electrons emit electromagnetic radiation that reveals details about the structure of the targeted molecules.

"Each electron can be thought of as a tiny magnet which senses the magnetic fields caused by atoms in its nano-neighborhood," said Mark Sherwin, professor of physics and director of the Institute for Terahertz Science and Technology at UCSB. "With FEL-powered EPR, we have shattered the electromagnetic bottleneck that EPR has faced, enabling electrons to report on faster motions occurring over longer distances than ever before. We look forward to breakthrough science that will lay foundations for discoveries like new drugs and more efficient ."

EPR spectroscopy has existed for decades. Its limiting factor is the electromagnetic radiation source used to excite the electrons – it becomes more powerful at high magnetic fields and frequencies, and when targeted electrons are excited with pulses of power as opposed to continuous waves.

Until now, scientists performed pulsed EPR spectroscopy with a few tens of GHz of electromagnetic radiation. Using the UC Santa Barbara , which emits a pulsed beam of electromagnetic radiation, the multi-university team was able to use 240 GHz of to power an EPR spectrometer.

Explore further: High-intensity sound waves may aid regenerative medicine

Related Stories

Photons on the Half Shell

Aug 16, 2007

In the realm of ultra-fast science, there's a region where photons of light can be made to dance only half steps. Here, advances in laser science are letting researchers tinker with the behavior light in an ...

Physicists see through the opaque with 'T-rays'

Dec 18, 2009

"T-rays" may make X-rays obsolete as a means of detecting bombs on terrorists or illegal drugs on traffickers, among other uses, contends a Texas A&M physicist who is helping lay the theoretical groundwork to make the concept ...

Recommended for you

High-intensity sound waves may aid regenerative medicine

21 minutes ago

Researchers at the University of Washington have developed a way to use sound to create cellular scaffolding for tissue engineering, a unique approach that could help overcome one of regenerative medicine's ...

Formula could shed light on global climate change

4 hours ago

Wright State University researchers have discovered a formula that accurately predicts the rate at which soil develops from the surface to the underlying rock, a breakthrough that could answer questions about ...

New world record for a neutron scattering magnet

5 hours ago

A unique magnet developed by the Florida State University-headquartered National High Magnetic Field Laboratory (MagLab) and Germany's Helmholtz Centre Berlin (HZB) has reached a new world record for a neutron ...

The science of charismatic voices

22 hours ago

When a right-wing Italian politician named Umberto Bossi suffered a severe stroke in 2004, his speech became permanently impaired. Strangely, this change impacted Bossi's perception among his party's followers—from appearing ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.